abacusai.api_class
Submodules
- abacusai.api_class.abstract
- abacusai.api_class.ai_agents
- abacusai.api_class.ai_chat
- abacusai.api_class.batch_prediction
- abacusai.api_class.blob_input
- abacusai.api_class.connectors
- abacusai.api_class.dataset
- abacusai.api_class.dataset_application_connector
- abacusai.api_class.deployment
- abacusai.api_class.document_retriever
- abacusai.api_class.enums
- abacusai.api_class.feature_group
- abacusai.api_class.model
- abacusai.api_class.monitor
- abacusai.api_class.monitor_alert
- abacusai.api_class.project
- abacusai.api_class.python_functions
- abacusai.api_class.refresh
- abacusai.api_class.segments
Attributes
Classes
Helper class that provides a standard way to create an ABC using |
|
Configs for vector store indexing. |
|
Represents a mapping of inputs to a workflow node. |
|
A schema conformant to react-jsonschema-form for workflow node input. |
|
Represents a mapping of output from a workflow node. |
|
A schema conformant to react-jsonschema-form for a workflow node output. |
|
Represents the configuration for a trigger workflow node. |
|
Represents a node in an Agent workflow graph. |
|
Represents an edge in an Agent workflow graph. |
|
Represents an Agent workflow graph. |
|
Message format for agent conversation |
|
Represents a WorkflowNode template config. |
|
Represents an input to the workflow node generated using template. |
|
Represents an output returned by the workflow node generated using template. |
|
Helper class that provides a standard way to create an ABC using |
|
A config class for a Data Science Co-Pilot Hotkey |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
An abstract class for Batch Prediction args specific to problem type. |
|
Batch Prediction Config for the FORECASTING problem type |
|
Batch Prediction Config for the NAMED_ENTITY_EXTRACTION problem type |
|
Batch Prediction Config for the PERSONALIZATION problem type |
|
Batch Prediction Config for the PREDICTIVE_MODELING problem type |
|
Batch Prediction Config for the PRETRAINED_MODELS problem type |
|
Batch Prediction Config for the SENTENCE_BOUNDARY_DETECTION problem type |
|
Batch Prediction Config for the THEME_ANALYSIS problem type |
|
Batch Prediction Config for the ChatLLM problem type |
|
Batch Prediction Config for the TrainablePlugAndPlay problem type |
|
Batch Prediction Config for the AIAgents problem type |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
An object for storing and passing file data. |
|
An object for storing and passing file data. |
|
Helper class that provides a standard way to create an ABC using |
|
An abstract class for dataset configs |
|
An abstract class for dataset configs specific to streaming connectors. |
|
Dataset config for Kafka Streaming Connector |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
Generic enumeration. |
|
Generic enumeration. |
|
An abstract class for dataset configs |
|
Custom config for dataset parsing. |
|
Document processing configuration. |
|
Document processing configuration for dataset imports. |
|
Config information for incremental datasets from database connectors |
|
Config information for parsing attachments |
|
Helper class that provides a standard way to create an ABC using |
|
An abstract class for dataset configs |
|
Document processing configuration for dataset imports. |
|
An abstract class for dataset configs specific to application connectors. |
|
Dataset config for Confluence Application Connector |
|
Dataset config for Box Application Connector |
|
Dataset config for Google Analytics Application Connector |
|
Dataset config for Google Drive Application Connector |
|
Dataset config for Jira Application Connector |
|
Dataset config for OneDrive Application Connector |
|
Dataset config for Sharepoint Application Connector |
|
Dataset config for Zendesk Application Connector |
|
Dataset config for Abacus Usage Metrics Application Connector |
|
Dataset config for Teams Scraper Application Connector |
|
Dataset config for Freshservice Application Connector |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
An abstract class for prediction arguments specific to problem type. |
|
Prediction arguments for the OPTIMIZATION problem type |
|
Prediction arguments for the TS_ANOMALY problem type |
|
Prediction arguments for the CHAT_LLM problem type |
|
Prediction arguments for the PREDICTIVE_MODELING problem type |
|
Prediction arguments for the FORECASTING problem type |
|
Prediction arguments for the CUMULATIVE_FORECASTING problem type |
|
Prediction arguments for the NATURAL_LANGUAGE_SEARCH problem type |
|
Prediction arguments for the FEATURE_STORE problem type |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
Generic enumeration. |
|
Config for indexing options of a document retriever. Default values of optional arguments are heuristically selected by the Abacus.AI platform based on the underlying data. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
Document processing configuration. |
|
An abstract class for the sampling config of a feature group |
|
The number of distinct values of the key columns to include in the sample, or number of rows if key columns not specified. |
|
The fraction of distinct values of the feature group to include in the sample. |
|
Helper class that provides a standard way to create an ABC using |
|
An abstract class for the merge config of a feature group |
|
Merge LAST N chunks/versions of an incremental dataset. |
|
Merge rows within a given timewindow of the most recent timestamp |
|
Helper class that provides a standard way to create an ABC using |
|
Configuration for a template Feature Group Operation |
|
Unpivot Columns in a FeatureGroup. |
|
Transform a input column to a markdown column. |
|
Transform a input column of urls to html text |
|
Extracts data from documents. |
|
Generate synthetic data using a model for finetuning an LLM. |
|
Takes Union of current feature group with 1 or more selected feature groups of same type. |
|
A class to select and return the the correct type of Operator Config based on a serialized OperatorConfig instance. |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
An abstract class for the training config options used to train the model. |
|
Training config for the PERSONALIZATION problem type |
|
Training config for the PREDICTIVE_MODELING problem type |
|
Training config for the FORECASTING problem type |
|
Training config for the NAMED_ENTITY_EXTRACTION problem type |
|
Training config for the NATURAL_LANGUAGE_SEARCH problem type |
|
Training config for the CHAT_LLM problem type |
|
Training config for the SENTENCE_BOUNDARY_DETECTION problem type |
|
Training config for the SENTIMENT_DETECTION problem type |
|
Training config for the DOCUMENT_CLASSIFICATION problem type |
|
Training config for the DOCUMENT_SUMMARIZATION problem type |
|
Training config for the DOCUMENT_VISUALIZATION problem type |
|
Training config for the CLUSTERING problem type |
|
Training config for the CLUSTERING_TIMESERIES problem type |
|
Training config for the EVENT_ANOMALY problem type |
|
Training config for the TS_ANOMALY problem type |
|
Training config for the CUMULATIVE_FORECASTING problem type |
|
Training config for the THEME ANALYSIS problem type |
|
Training config for the AI_AGENT problem type |
|
Training config for the CUSTOM_TRAINED_MODEL problem type |
|
Training config for the CUSTOM_ALGORITHM problem type |
|
Training config for the OPTIMIZATION problem type |
|
Helper class that provides a standard way to create an ABC using |
|
Algorithm that can be deployed to a model. |
|
Helper class that provides a standard way to create an ABC using |
|
Generic enumeration. |
|
Time Window Configuration |
|
Forecasting Monitor Configuration |
|
Std Dev Threshold types |
|
Item Attributes Std Dev Threshold for Monitor Alerts |
|
Restrict Feature Mappings for Monitor Filtering |
|
Monitor Filtering Configuration |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
An abstract class for alert condition configs |
|
Accuracy Below Threshold Condition Config for Monitor Alerts |
|
Feature Drift Condition Config for Monitor Alerts |
|
Target Drift Condition Config for Monitor Alerts |
|
History Length Drift Condition Config for Monitor Alerts |
|
Data Integrity Violation Condition Config for Monitor Alerts |
|
Bias Violation Condition Config for Monitor Alerts |
|
Deployment Prediction Condition Config for Deployment Alerts. By default we monitor if predictions made over a time window has reduced significantly. |
|
Helper class that provides a standard way to create an ABC using |
|
An abstract class for alert action configs |
|
Email Action Config for Monitor Alerts |
|
Helper class that provides a standard way to create an ABC using |
|
Monitor Threshold Config for Monitor Alerts |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
Feature mapping configuration for a feature group type. |
|
Project feature group type mappings. |
|
Constraint configuration. |
|
An abstract class for project feature group configuration. |
|
Constraint project feature group configuration. |
|
Review mode project feature group configuration. |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
A config class for python function arguments |
|
A config class for python function arguments |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
An abstract class for feature group exports. |
|
File connector export config for feature groups |
|
Database connector export config for feature groups |
|
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
A response section that an agent can return to render specific UI elements. |
|
A response section that an AI Agent can return to render a button. |
|
A response section that an agent can return to render an image. |
|
A response section that an agent can return to render text. |
|
A segment that an agent can return to render json and ui schema in react-jsonschema-form format for workflow nodes. |
|
A response section that an agent can return to render code. |
|
A response section that an agent can return to render a base64 image. |
|
A response section that an agent can return to render a collapsible component. |
|
A response section that an agent can return to render a list. |
|
A response section that an agent can return to render a chart. |
|
A response section that an agent can return to render a pandas dataframe. |
Functions
|
|
|
|
|
Package Contents
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- abacusai.api_class.get_clean_function_source_code_for_agent(func)
- Parameters:
func (Callable)
- abacusai.api_class.validate_constructor_arg_types(friendly_class_name=None)
- abacusai.api_class.validate_input_dict_param(dict_object, friendly_class_name, must_contain=[])
- class abacusai.api_class.FieldDescriptor
Bases:
abacusai.api_class.abstract.ApiClass
Configs for vector store indexing.
- Parameters:
field (str) – The field to be extracted. This will be used as the key in the response.
description (str) – The description of this field. If not included, the response_field will be used.
example_extraction (Union[str, int, bool, float]) – An example of this extracted field.
type (FieldDescriptorType) – The type of this field. If not provided, the default type is STRING.
- class abacusai.api_class.JSONSchema
- class abacusai.api_class.WorkflowNodeInputMapping
Bases:
abacusai.api_class.abstract.ApiClass
Represents a mapping of inputs to a workflow node.
- Parameters:
name (str) – The name of the input variable of the node function.
variable_type (Union[WorkflowNodeInputType, str]) – The type of the input. If the type is IGNORE, the input will be ignored.
variable_source (str) – The name of the node this variable is sourced from. If the type is WORKFLOW_VARIABLE, the value given by the source node will be directly used. If the type is USER_INPUT, the value given by the source node will be used as the default initial value before the user edits it. Set to None if the type is USER_INPUT and the variable doesn’t need a pre-filled initial value.
is_required (bool) – Indicates whether the input is required. Defaults to True.
description (str) – The description of this input.
constant_value (str) – The constant value of this input if variable type is CONSTANT. Only applicable for template nodes.
- variable_type: abacusai.api_class.enums.WorkflowNodeInputType
- __post_init__()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.WorkflowNodeInputSchema
Bases:
abacusai.api_class.abstract.ApiClass
,JSONSchema
A schema conformant to react-jsonschema-form for workflow node input.
To initialize a WorkflowNodeInputSchema dependent on another node’s output, use the from_workflow_node method.
- Parameters:
json_schema (dict) – The JSON schema for the input, conformant to react-jsonschema-form specification. Must define keys like “title”, “type”, and “properties”. Supported elements include Checkbox, Radio Button, Dropdown, Textarea, Number, Date, and file upload. Nested elements, arrays, and other complex types are not supported.
ui_schema (dict) – The UI schema for the input, conformant to react-jsonschema-form specification.
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- classmethod from_workflow_node(schema_source, schema_prop)
Creates a WorkflowNodeInputSchema instance which references the schema generated by a WorkflowGraphNode.
- classmethod from_input_mappings(input_mappings)
Creates a json_schema for the input schema of the node from it’s input mappings.
- Parameters:
input_mappings (List[WorkflowNodeInputMapping]) – The input mappings for the node.
- class abacusai.api_class.WorkflowNodeOutputMapping
Bases:
abacusai.api_class.abstract.ApiClass
Represents a mapping of output from a workflow node.
- Parameters:
name (str) – The name of the output.
variable_type (Union[WorkflowNodeOutputType, str]) – The type of the output in the form of an enum or a string.
description (str) – The description of this output.
- variable_type: abacusai.api_class.enums.WorkflowNodeOutputType | str
- __post_init__()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.WorkflowNodeOutputSchema
Bases:
abacusai.api_class.abstract.ApiClass
,JSONSchema
A schema conformant to react-jsonschema-form for a workflow node output.
- Parameters:
json_schema (dict) – The JSON schema for the output, conformant to react-jsonschema-form specification.
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.TriggerConfig
Bases:
abacusai.api_class.abstract.ApiClass
Represents the configuration for a trigger workflow node.
- Parameters:
sleep_time (int) – The time in seconds to wait before the node gets executed again.
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.WorkflowGraphNode(name, function=None, input_mappings=None, output_mappings=None, function_name=None, source_code=None, input_schema=None, output_schema=None, template_metadata=None, trigger_config=None)
Bases:
abacusai.api_class.abstract.ApiClass
Represents a node in an Agent workflow graph.
- Parameters:
name (str) – A unique name for the workflow node.
input_mappings (List[WorkflowNodeInputMapping]) – List of input mappings for the node. Each arg/kwarg of the node function should have a corresponding input mapping.
output_mappings (List[WorkflowNodeOutputMapping]) – List of output mappings for the node. Each field in the returned dict/AgentResponse must have a corresponding output mapping.
function (callable) – The callable node function reference.
input_schema (WorkflowNodeInputSchema) – The react json schema for the user input variables.
output_schema (WorkflowNodeOutputSchema) – The react json schema for the output to be shown on UI.
function_name (str)
source_code (str)
template_metadata (dict)
trigger_config (TriggerConfig)
- Additional Attributes:
function_name (str): The name of the function. source_code (str): The source code of the function. trigger_config (TriggerConfig): The configuration for a trigger workflow node.
- template_metadata = None
- trigger_config = None
- classmethod _raw_init(name, input_mappings=None, output_mappings=None, function=None, function_name=None, source_code=None, input_schema=None, output_schema=None, template_metadata=None, trigger_config=None)
- Parameters:
name (str)
input_mappings (List[WorkflowNodeInputMapping])
output_mappings (List[WorkflowNodeOutputMapping])
function (callable)
function_name (str)
source_code (str)
input_schema (WorkflowNodeInputSchema)
output_schema (WorkflowNodeOutputSchema)
template_metadata (dict)
trigger_config (TriggerConfig)
- classmethod from_template(template_name, name, configs=None, input_mappings=None, input_schema=None, output_schema=None, sleep_time=None)
- Parameters:
template_name (str)
name (str)
configs (dict)
input_mappings (Union[Dict[str, WorkflowNodeInputMapping], List[WorkflowNodeInputMapping]])
input_schema (Union[List[str], WorkflowNodeInputSchema])
output_schema (Union[List[str], WorkflowNodeOutputSchema])
sleep_time (int)
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- __setattr__(name, value)
- __getattribute__(name)
- class Outputs(node)
- Parameters:
node (WorkflowGraphNode)
- node
- __getattr__(name)
- property outputs
- class abacusai.api_class.WorkflowGraphEdge(source, target, details=None)
Bases:
abacusai.api_class.abstract.ApiClass
Represents an edge in an Agent workflow graph.
To make an edge conditional, provide {‘EXECUTION_CONDITION’: ‘<condition>’} key-value in the details dictionary. The condition should be a Pythonic expression string that evaluates to a boolean value and only depends on the outputs of the source node of the edge.
- Parameters:
- source: str | WorkflowGraphNode
- target: str | WorkflowGraphNode
- to_nx_edge()
- class abacusai.api_class.WorkflowGraph
Bases:
abacusai.api_class.abstract.ApiClass
Represents an Agent workflow graph.
The edges define the node invocation order.
- Parameters:
nodes (List[WorkflowGraphNode]) – A list of nodes in the workflow graph.
edges (List[WorkflowGraphEdge]) – A list of edges in the workflow graph, where each edge is a tuple of source, target, and details.
primary_start_node (Union[str, WorkflowGraphNode]) – The primary node to start the workflow from.
- nodes: List[WorkflowGraphNode] = []
- edges: List[WorkflowGraphEdge | Tuple[WorkflowGraphNode, WorkflowGraphNode, dict] | Tuple[str, str, dict]] = []
- primary_start_node: str | WorkflowGraphNode = None
- __post_init__()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.AgentConversationMessage
Bases:
abacusai.api_class.abstract.ApiClass
Message format for agent conversation
- Parameters:
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.WorkflowNodeTemplateConfig
Bases:
abacusai.api_class.abstract.ApiClass
Represents a WorkflowNode template config.
- Parameters:
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.WorkflowNodeTemplateInput
Bases:
abacusai.api_class.abstract.ApiClass
Represents an input to the workflow node generated using template.
- Parameters:
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.WorkflowNodeTemplateOutput
Bases:
abacusai.api_class.abstract.ApiClass
Represents an output returned by the workflow node generated using template.
- Parameters:
name (str) – The name of the output.
variable_type (WorkflowNodeOutputType) – The type of the output.
description (str) – The description of this output.
- variable_type: abacusai.api_class.enums.WorkflowNodeOutputType
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.HotkeyPrompt
Bases:
abacusai.api_class.abstract.ApiClass
A config class for a Data Science Co-Pilot Hotkey
- Parameters:
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class._ApiClassFactory
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class = None
- config_class_key = None
- config_class_map
- class abacusai.api_class.BatchPredictionArgs
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for Batch Prediction args specific to problem type.
- problem_type: abacusai.api_class.enums.ProblemType = None
- classmethod _get_builder()
- class abacusai.api_class.ForecastingBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the FORECASTING problem type
- Parameters:
for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation
predictions_start_date (str) – The start date for predictions. Accepts timestamp integers and strings in many standard formats such as YYYY-MM-DD, YYYY-MM-DD HH:MM:SS, or YYYY-MM-DDTHH:MM:SS. If not specified, the prediction start date will be automatically defined.
use_prediction_offset (bool) – If True, use prediction offset.
start_date_offset (int) – Sets prediction start date as this offset relative to the prediction start date.
forecasting_horizon (int) – The number of timestamps to predict in the future. Range: [1, 1000].
item_attributes_to_include_in_the_result (list) – List of columns to include in the prediction output.
explain_predictions (bool) – If True, calculates explanations for the forecasted values along with predictions.
create_monitor (bool) – Controls whether to automatically create a monitor to calculate the drift each time the batch prediction is run. Defaults to true if not specified.
- __post_init__()
- class abacusai.api_class.NamedEntityExtractionBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the NAMED_ENTITY_EXTRACTION problem type
- Parameters:
for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.
- __post_init__()
- class abacusai.api_class.PersonalizationBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the PERSONALIZATION problem type
- Parameters:
for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.
number_of_items (int) – Number of items to recommend.
item_attributes_to_include_in_the_result (list) – List of columns to include in the prediction output.
score_field (str) – If specified, relative item scores will be returned using a field with this name
- __post_init__()
- class abacusai.api_class.PredictiveModelingBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the PREDICTIVE_MODELING problem type
- Parameters:
for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.
explainer_type (enums.ExplainerType) – The type of explainer to use to generate explanations on the batch prediction.
number_of_samples_to_use_for_explainer (int) – Number Of Samples To Use For Kernel Explainer.
include_multi_class_explanations (bool) – If True, Includes explanations for all classes in multi-class classification.
features_considered_constant_for_explanations (str) – Comma separate list of fields to treat as constant in SHAP explanations.
importance_of_records_in_nested_columns (str) – Returns importance of each index in the specified nested column instead of SHAP column explanations.
explanation_filter_lower_bound (float) – If set explanations will be limited to predictions above this value, Range: [0, 1].
explanation_filter_upper_bound (float) – If set explanations will be limited to predictions below this value, Range: [0, 1].
explanation_filter_label (str) – For classification problems specifies the label to which the explanation bounds are applied.
output_columns (list) – A list of column names to include in the prediction result.
explain_predictions (bool) – If True, calculates explanations for the predicted values along with predictions.
create_monitor (bool) – Controls whether to automatically create a monitor to calculate the drift each time the batch prediction is run. Defaults to true if not specified.
- explainer_type: abacusai.api_class.enums.ExplainerType = None
- __post_init__()
- class abacusai.api_class.PretrainedModelsBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the PRETRAINED_MODELS problem type
- Parameters:
for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.
files_output_location_prefix (str) – The output location prefix for the files.
channel_id_to_label_map (str) – JSON string for the map from channel ids to their labels.
- __post_init__()
- class abacusai.api_class.SentenceBoundaryDetectionBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the SENTENCE_BOUNDARY_DETECTION problem type
- Parameters:
- __post_init__()
- class abacusai.api_class.ThemeAnalysisBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the THEME_ANALYSIS problem type
- Parameters:
for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.
analysis_frequency (str) – The length of each analysis interval.
start_date (str) – The end point for predictions.
analysis_days (int) – How many days to analyze.
- __post_init__()
- class abacusai.api_class.ChatLLMBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the ChatLLM problem type
- Parameters:
for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.
- __post_init__()
- class abacusai.api_class.TrainablePlugAndPlayBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the TrainablePlugAndPlay problem type
- Parameters:
for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.
create_monitor (bool) – Controls whether to automatically create a monitor to calculate the drift each time the batch prediction is run. Defaults to true if not specified.
- __post_init__()
- class abacusai.api_class.AIAgentBatchPredictionArgs
Bases:
BatchPredictionArgs
Batch Prediction Config for the AIAgents problem type
- __post_init__()
- class abacusai.api_class._BatchPredictionArgsFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class
- config_class_key = 'problem_type'
- config_class_map
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.Blob(contents, mime_type=None, filename=None, size=None)
Bases:
abacusai.api_class.abstract.ApiClass
An object for storing and passing file data. In AI Agents, if a function accepts file upload as an argument, the uploaded file is passed as a Blob object. If a function returns a Blob object, it will be rendered as a file download.
- Parameters:
- class abacusai.api_class.BlobInput(filename=None, contents=None, mime_type=None, size=None)
Bases:
Blob
An object for storing and passing file data. In AI Agents, if a function accepts file upload as an argument, the uploaded file is passed as a BlobInput object.
- class abacusai.api_class._ApiClassFactory
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class = None
- config_class_key = None
- config_class_map
- class abacusai.api_class.DatasetConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for dataset configs
- Parameters:
is_documentset (bool) – Whether the dataset is a document set
- class abacusai.api_class.StreamingConnectorDatasetConfig
Bases:
abacusai.api_class.dataset.DatasetConfig
An abstract class for dataset configs specific to streaming connectors.
- Parameters:
streaming_connector_type (StreamingConnectorType) – The type of streaming connector
- streaming_connector_type: abacusai.api_class.enums.StreamingConnectorType = None
- classmethod _get_builder()
- class abacusai.api_class.KafkaDatasetConfig
Bases:
StreamingConnectorDatasetConfig
Dataset config for Kafka Streaming Connector
- Parameters:
topic (str) – The kafka topic to consume
- __post_init__()
- class abacusai.api_class._StreamingConnectorDatasetConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class
- config_class_key = 'streaming_connector_type'
- config_class_map
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.DocumentType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- SIMPLE_TEXT = 'SIMPLE_TEXT'
- TEXT = 'TEXT'
- TABLES_AND_FORMS = 'TABLES_AND_FORMS'
- EMBEDDED_IMAGES = 'EMBEDDED_IMAGES'
- SCANNED_TEXT = 'SCANNED_TEXT'
- classmethod is_ocr_forced(document_type)
- Parameters:
document_type (DocumentType)
- class abacusai.api_class.OcrMode
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AUTO = 'AUTO'
- DEFAULT = 'DEFAULT'
- LAYOUT = 'LAYOUT'
- SCANNED = 'SCANNED'
- COMPREHENSIVE = 'COMPREHENSIVE'
- COMPREHENSIVE_V2 = 'COMPREHENSIVE_V2'
- COMPREHENSIVE_TABLE_MD = 'COMPREHENSIVE_TABLE_MD'
- COMPREHENSIVE_FORM_MD = 'COMPREHENSIVE_FORM_MD'
- COMPREHENSIVE_FORM_AND_TABLE_MD = 'COMPREHENSIVE_FORM_AND_TABLE_MD'
- TESSERACT_FAST = 'TESSERACT_FAST'
- LLM = 'LLM'
- AUGMENTED_LLM = 'AUGMENTED_LLM'
- classmethod aws_ocr_modes()
- class abacusai.api_class.DatasetConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for dataset configs
- Parameters:
is_documentset (bool) – Whether the dataset is a document set
- class abacusai.api_class.ParsingConfig
Bases:
abacusai.api_class.abstract.ApiClass
Custom config for dataset parsing.
- Parameters:
- class abacusai.api_class.DocumentProcessingConfig
Bases:
abacusai.api_class.abstract.ApiClass
Document processing configuration.
- Parameters:
document_type (DocumentType) – Type of document. Can be one of Text, Tables and Forms, Embedded Images, etc. If not specified, type will be decided automatically.
highlight_relevant_text (bool) – Whether to extract bounding boxes and highlight relevant text in search results. Defaults to False.
extract_bounding_boxes (bool) – Whether to perform OCR and extract bounding boxes. If False, no OCR will be done but only the embedded text from digital documents will be extracted. Defaults to False.
ocr_mode (OcrMode) – OCR mode. There are different OCR modes available for different kinds of documents and use cases. This option only takes effect when extract_bounding_boxes is True.
use_full_ocr (bool) – Whether to perform full OCR. If True, OCR will be performed on the full page. If False, OCR will be performed on the non-text regions only. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.
remove_header_footer (bool) – Whether to remove headers and footers. Defaults to False. This option only takes effect when extract_bounding_boxes is True.
remove_watermarks (bool) – Whether to remove watermarks. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.
convert_to_markdown (bool) – Whether to convert extracted text to markdown. Defaults to False. This option only takes effect when extract_bounding_boxes is True.
mask_pii (bool) – Whether to mask personally identifiable information (PII) in the document text/tokens. Defaults to False.
- document_type: abacusai.api_class.enums.DocumentType = None
- ocr_mode: abacusai.api_class.enums.OcrMode
- __post_init__()
- _detect_ocr_mode()
- class abacusai.api_class.DatasetDocumentProcessingConfig
Bases:
DocumentProcessingConfig
Document processing configuration for dataset imports.
- Parameters:
extract_bounding_boxes (bool) – Whether to perform OCR and extract bounding boxes. If False, no OCR will be done but only the embedded text from digital documents will be extracted. Defaults to False.
ocr_mode (OcrMode) – OCR mode. There are different OCR modes available for different kinds of documents and use cases. This option only takes effect when extract_bounding_boxes is True.
use_full_ocr (bool) – Whether to perform full OCR. If True, OCR will be performed on the full page. If False, OCR will be performed on the non-text regions only. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.
remove_header_footer (bool) – Whether to remove headers and footers. Defaults to False. This option only takes effect when extract_bounding_boxes is True.
remove_watermarks (bool) – Whether to remove watermarks. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.
convert_to_markdown (bool) – Whether to convert extracted text to markdown. Defaults to False. This option only takes effect when extract_bounding_boxes is True.
page_text_column (str) – Name of the output column which contains the extracted text for each page. If not provided, no column will be created.
- class abacusai.api_class.IncrementalDatabaseConnectorConfig
Bases:
abacusai.api_class.abstract.ApiClass
Config information for incremental datasets from database connectors
- Parameters:
timestamp_column (str) – If dataset is incremental, this is the column name of the required column in the dataset. This column must contain timestamps in descending order which are used to determine the increments of the incremental dataset.
- class abacusai.api_class.AttachmentParsingConfig
Bases:
abacusai.api_class.abstract.ApiClass
Config information for parsing attachments
- Parameters:
- class abacusai.api_class._ApiClassFactory
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class = None
- config_class_key = None
- config_class_map
- class abacusai.api_class.DatasetConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for dataset configs
- Parameters:
is_documentset (bool) – Whether the dataset is a document set
- class abacusai.api_class.DatasetDocumentProcessingConfig
Bases:
DocumentProcessingConfig
Document processing configuration for dataset imports.
- Parameters:
extract_bounding_boxes (bool) – Whether to perform OCR and extract bounding boxes. If False, no OCR will be done but only the embedded text from digital documents will be extracted. Defaults to False.
ocr_mode (OcrMode) – OCR mode. There are different OCR modes available for different kinds of documents and use cases. This option only takes effect when extract_bounding_boxes is True.
use_full_ocr (bool) – Whether to perform full OCR. If True, OCR will be performed on the full page. If False, OCR will be performed on the non-text regions only. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.
remove_header_footer (bool) – Whether to remove headers and footers. Defaults to False. This option only takes effect when extract_bounding_boxes is True.
remove_watermarks (bool) – Whether to remove watermarks. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.
convert_to_markdown (bool) – Whether to convert extracted text to markdown. Defaults to False. This option only takes effect when extract_bounding_boxes is True.
page_text_column (str) – Name of the output column which contains the extracted text for each page. If not provided, no column will be created.
- class abacusai.api_class.ApplicationConnectorDatasetConfig
Bases:
abacusai.api_class.dataset.DatasetConfig
An abstract class for dataset configs specific to application connectors.
- Parameters:
application_connector_type (enums.ApplicationConnectorType) – The type of application connector
application_connector_id (str) – The ID of the application connector
document_processing_config (DatasetDocumentProcessingConfig) – The document processing configuration. Only valid if is_documentset is True for the dataset.
- application_connector_type: abacusai.api_class.enums.ApplicationConnectorType = None
- document_processing_config: abacusai.api_class.dataset.DatasetDocumentProcessingConfig = None
- classmethod _get_builder()
- class abacusai.api_class.ConfluenceDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Confluence Application Connector :param location: The location of the pages to fetch :type location: str :param space_key: The space key of the space from which we fetch pages :type space_key: str :param pull_attachments: Whether to pull attachments for each page :type pull_attachments: bool :param extract_bounding_boxes: Whether to extract bounding boxes from the documents :type extract_bounding_boxes: bool
- __post_init__()
- class abacusai.api_class.BoxDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Box Application Connector :param location: The regex location of the files to fetch :type location: str
- __post_init__()
- class abacusai.api_class.GoogleAnalyticsDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Google Analytics Application Connector
- Parameters:
- __post_init__()
- class abacusai.api_class.GoogleDriveDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Google Drive Application Connector
- Parameters:
location (str) – The regex location of the files to fetch
csv_delimiter (str) – If the file format is CSV, use a specific csv delimiter
extract_bounding_boxes (bool) – Signifies whether to extract bounding boxes out of the documents. Only valid if is_documentset if True
merge_file_schemas (bool) – Signifies if the merge file schema policy is enabled. Not applicable if is_documentset is True
- __post_init__()
- class abacusai.api_class.JiraDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Jira Application Connector
- Parameters:
- __post_init__()
- class abacusai.api_class.OneDriveDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for OneDrive Application Connector
- Parameters:
location (str) – The regex location of the files to fetch
csv_delimiter (str) – If the file format is CSV, use a specific csv delimiter
extract_bounding_boxes (bool) – Signifies whether to extract bounding boxes out of the documents. Only valid if is_documentset if True
merge_file_schemas (bool) – Signifies if the merge file schema policy is enabled. Not applicable if is_documentset is True
- __post_init__()
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Sharepoint Application Connector
- Parameters:
location (str) – The regex location of the files to fetch
csv_delimiter (str) – If the file format is CSV, use a specific csv delimiter
extract_bounding_boxes (bool) – Signifies whether to extract bounding boxes out of the documents. Only valid if is_documentset if True
merge_file_schemas (bool) – Signifies if the merge file schema policy is enabled. Not applicable if is_documentset is True
- class abacusai.api_class.ZendeskDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Zendesk Application Connector
- Parameters:
location (str) – The regex location of the files to fetch
- __post_init__()
- class abacusai.api_class.AbacusUsageMetricsDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Abacus Usage Metrics Application Connector
- Parameters:
include_entire_conversation_history (bool) – Whether to show the entire history for this deployment conversation
include_all_feedback (bool) – Whether to include all feedback for this deployment conversation
resolve_matching_documents (bool) – Whether to get matching document references for response instead of prompt. Needs to recalculate them if highlights are unavailable in summary_info
- __post_init__()
- class abacusai.api_class.TeamsScraperDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Teams Scraper Application Connector
- Parameters:
- __post_init__()
- class abacusai.api_class.FreshserviceDatasetConfig
Bases:
ApplicationConnectorDatasetConfig
Dataset config for Freshservice Application Connector
- __post_init__()
- class abacusai.api_class._ApplicationConnectorDatasetConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class
- config_class_key = 'application_connector_type'
- config_class_map
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class._ApiClassFactory
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class = None
- config_class_key = None
- config_class_map
- class abacusai.api_class.PredictionArguments
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for prediction arguments specific to problem type.
- problem_type: abacusai.api_class.enums.ProblemType = None
- classmethod _get_builder()
- class abacusai.api_class.OptimizationPredictionArguments
Bases:
PredictionArguments
Prediction arguments for the OPTIMIZATION problem type
- Parameters:
forced_assignments (dict) – Set of assignments to force and resolve before returning query results.
solve_time_limit_seconds (float) – Maximum time in seconds to spend solving the query.
include_all_assignments (bool) – If True, will return all assignments, including assignments with value 0. Default is False.
- __post_init__()
- class abacusai.api_class.TimeseriesAnomalyPredictionArguments
Bases:
PredictionArguments
Prediction arguments for the TS_ANOMALY problem type
- Parameters:
- __post_init__()
- class abacusai.api_class.ChatLLMPredictionArguments
Bases:
PredictionArguments
Prediction arguments for the CHAT_LLM problem type
- Parameters:
llm_name (str) – Name of the specific LLM backend to use to power the chat experience.
num_completion_tokens (int) – Default for maximum number of tokens for chat answers.
system_message (str) – The generative LLM system message.
temperature (float) – The generative LLM temperature.
search_score_cutoff (float) – Cutoff for the document retriever score. Matching search results below this score will be ignored.
ignore_documents (bool) – If True, will ignore any documents and search results, and only use the messages to generate a response.
- __post_init__()
- class abacusai.api_class.RegressionPredictionArguments
Bases:
PredictionArguments
Prediction arguments for the PREDICTIVE_MODELING problem type
- Parameters:
- __post_init__()
- class abacusai.api_class.ForecastingPredictionArguments
Bases:
PredictionArguments
Prediction arguments for the FORECASTING problem type
- Parameters:
num_predictions (int) – The number of timestamps to predict in the future.
prediction_start (str) – The start date for predictions (e.g., “2015-08-01T00:00:00” as input for mid-night of 2015-08-01).
explain_predictions (bool) – If True, explain predictions for forecasting.
explainer_type (str) – Type of explainer to use for explanations.
get_item_data (bool) – If True, will return the data corresponding to items as well.
- __post_init__()
- class abacusai.api_class.CumulativeForecastingPredictionArguments
Bases:
PredictionArguments
Prediction arguments for the CUMULATIVE_FORECASTING problem type
- Parameters:
num_predictions (int) – The number of timestamps to predict in the future.
prediction_start (str) – The start date for predictions (e.g., “2015-08-01T00:00:00” as input for mid-night of 2015-08-01).
explain_predictions (bool) – If True, explain predictions for forecasting.
explainer_type (str) – Type of explainer to use for explanations.
get_item_data (bool) – If True, will return the data corresponding to items as well.
- __post_init__()
- class abacusai.api_class.NaturalLanguageSearchPredictionArguments
Bases:
PredictionArguments
Prediction arguments for the NATURAL_LANGUAGE_SEARCH problem type
- Parameters:
llm_name (str) – Name of the specific LLM backend to use to power the chat experience.
num_completion_tokens (int) – Default for maximum number of tokens for chat answers.
system_message (str) – The generative LLM system message.
temperature (float) – The generative LLM temperature.
search_score_cutoff (float) – Cutoff for the document retriever score. Matching search results below this score will be ignored.
ignore_documents (bool) – If True, will ignore any documents and search results, and only use the messages to generate a response.
- __post_init__()
- class abacusai.api_class.FeatureStorePredictionArguments
Bases:
PredictionArguments
Prediction arguments for the FEATURE_STORE problem type
- Parameters:
limit_results (int) – If provided, will limit the number of results to the value specified.
- __post_init__()
- class abacusai.api_class._PredictionArgumentsFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class
- config_class_key = 'problem_type'
- config_class_map
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.VectorStoreTextEncoder
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- E5 = 'E5'
- OPENAI = 'OPENAI'
- OPENAI_COMPACT = 'OPENAI_COMPACT'
- OPENAI_LARGE = 'OPENAI_LARGE'
- SENTENCE_BERT = 'SENTENCE_BERT'
- E5_SMALL = 'E5_SMALL'
- CODE_BERT = 'CODE_BERT'
- class abacusai.api_class.VectorStoreConfig
Bases:
abacusai.api_class.abstract.ApiClass
Config for indexing options of a document retriever. Default values of optional arguments are heuristically selected by the Abacus.AI platform based on the underlying data.
- Parameters:
chunk_size (int) – The size of text chunks in the vector store.
chunk_overlap_fraction (float) – The fraction of overlap between chunks.
text_encoder (VectorStoreTextEncoder) – Encoder used to index texts from the documents.
chunk_size_factors (list) – Chunking data with multiple sizes. The specified list of factors are used to calculate more sizes, in addition to chunk_size.
score_multiplier_column (str) – If provided, will use the values in this metadata column to modify the relevance score of returned chunks for all queries.
prune_vectors (bool) – Transform vectors using SVD so that the average component of vectors in the corpus are removed.
index_metadata_columns (bool) – If True, metadata columns of the FG will also be used for indexing and querying.
use_document_summary (bool) – If True, uses the summary of the document in addition to chunks of the document for indexing and querying.
summary_instructions (str) – Instructions for the LLM to generate the document summary.
- text_encoder: abacusai.api_class.enums.VectorStoreTextEncoder = None
- abacusai.api_class.DocumentRetrieverConfig
- abacusai.api_class.deprecated_enums(*enum_values)
- class abacusai.api_class.ApiEnum
Bases:
enum.Enum
Generic enumeration.
Derive from this class to define new enumerations.
- __deprecated_values__ = []
- is_deprecated()
- __eq__(other)
- __hash__()
- class abacusai.api_class.ProblemType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AI_AGENT = 'ai_agent'
- EVENT_ANOMALY = 'event_anomaly'
- CLUSTERING = 'clustering'
- CLUSTERING_TIMESERIES = 'clustering_timeseries'
- CUMULATIVE_FORECASTING = 'cumulative_forecasting'
- NAMED_ENTITY_EXTRACTION = 'nlp_ner'
- NATURAL_LANGUAGE_SEARCH = 'nlp_search'
- CHAT_LLM = 'chat_llm'
- SENTENCE_BOUNDARY_DETECTION = 'nlp_sentence_boundary_detection'
- SENTIMENT_DETECTION = 'nlp_sentiment'
- DOCUMENT_CLASSIFICATION = 'nlp_classification'
- DOCUMENT_SUMMARIZATION = 'nlp_summarization'
- DOCUMENT_VISUALIZATION = 'nlp_document_visualization'
- PERSONALIZATION = 'personalization'
- PREDICTIVE_MODELING = 'regression'
- FINETUNED_LLM = 'finetuned_llm'
- FORECASTING = 'forecasting'
- CUSTOM_TRAINED_MODEL = 'plug_and_play'
- CUSTOM_ALGORITHM = 'trainable_plug_and_play'
- FEATURE_STORE = 'feature_store'
- IMAGE_CLASSIFICATION = 'vision_classification'
- OBJECT_DETECTION = 'vision_object_detection'
- IMAGE_VALUE_PREDICTION = 'vision_regression'
- MODEL_MONITORING = 'model_monitoring'
- LANGUAGE_DETECTION = 'language_detection'
- OPTIMIZATION = 'optimization'
- PRETRAINED_MODELS = 'pretrained'
- THEME_ANALYSIS = 'theme_analysis'
- TS_ANOMALY = 'ts_anomaly'
- class abacusai.api_class.RegressionObjective
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AUC = 'auc'
- ACCURACY = 'acc'
- LOG_LOSS = 'log_loss'
- PRECISION = 'precision'
- RECALL = 'recall'
- F1_SCORE = 'fscore'
- MAE = 'mae'
- MAPE = 'mape'
- WAPE = 'wape'
- RMSE = 'rmse'
- R_SQUARED_COEFFICIENT_OF_DETERMINATION = 'r^2'
- class abacusai.api_class.RegressionTreeHPOMode
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- RAPID = 'rapid'
- THOROUGH = 'thorough'
- class abacusai.api_class.PartialDependenceAnalysis
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- RAPID = 'rapid'
- THOROUGH = 'thorough'
- class abacusai.api_class.RegressionAugmentationStrategy
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- SMOTE = 'smote'
- RESAMPLE = 'resample'
- class abacusai.api_class.RegressionTargetTransform
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- LOG = 'log'
- QUANTILE = 'quantile'
- YEO_JOHNSON = 'yeo-johnson'
- BOX_COX = 'box-cox'
- class abacusai.api_class.RegressionTypeOfSplit
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- RANDOM = 'Random Sampling'
- TIMESTAMP_BASED = 'Timestamp Based'
- ROW_INDICATOR_BASED = 'Row Indicator Based'
- STRATIFIED_RANDOM_SAMPLING = 'Stratified Random Sampling'
- class abacusai.api_class.RegressionTimeSplitMethod
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- TEST_SPLIT_PERCENTAGE_BASED = 'Test Split Percentage Based'
- TEST_START_TIMESTAMP_BASED = 'Test Start Timestamp Based'
- class abacusai.api_class.RegressionLossFunction
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- HUBER = 'Huber'
- MSE = 'Mean Squared Error'
- MAE = 'Mean Absolute Error'
- MAPE = 'Mean Absolute Percentage Error'
- MSLE = 'Mean Squared Logarithmic Error'
- TWEEDIE = 'Tweedie'
- CROSS_ENTROPY = 'Cross Entropy'
- FOCAL_CROSS_ENTROPY = 'Focal Cross Entropy'
- AUTOMATIC = 'Automatic'
- CUSTOM = 'Custom'
- class abacusai.api_class.ExplainerType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- KERNEL_EXPLAINER = 'KERNEL_EXPLAINER'
- LIME_EXPLAINER = 'LIME_EXPLAINER'
- TREE_EXPLAINER = 'TREE_EXPLAINER'
- EBM_EXPLAINER = 'EBM_EXPLAINER'
- class abacusai.api_class.SamplingMethodType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- N_SAMPLING = 'N_SAMPLING'
- PERCENT_SAMPLING = 'PERCENT_SAMPLING'
- class abacusai.api_class.MergeMode
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- LAST_N = 'LAST_N'
- TIME_WINDOW = 'TIME_WINDOW'
- class abacusai.api_class.OperatorType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- UNPIVOT = 'UNPIVOT'
- MARKDOWN = 'MARKDOWN'
- CRAWLER = 'CRAWLER'
- EXTRACT_DOCUMENT_DATA = 'EXTRACT_DOCUMENT_DATA'
- DATA_GENERATION = 'DATA_GENERATION'
- UNION = 'UNION'
- class abacusai.api_class.MarkdownOperatorInputType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- HTML = 'HTML'
- class abacusai.api_class.FillLogic
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AVERAGE = 'average'
- MAX = 'max'
- MEDIAN = 'median'
- MIN = 'min'
- CUSTOM = 'custom'
- BACKFILL = 'bfill'
- FORWARDFILL = 'ffill'
- LINEAR = 'linear'
- NEAREST = 'nearest'
- class abacusai.api_class.BatchSize
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- BATCH_8 = 8
- BATCH_16 = 16
- BATCH_32 = 32
- BATCH_64 = 64
- BATCH_128 = 128
- BATCH_256 = 256
- BATCH_384 = 384
- BATCH_512 = 512
- BATCH_740 = 740
- BATCH_1024 = 1024
- class abacusai.api_class.HolidayCalendars
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AU = 'AU'
- UK = 'UK'
- US = 'US'
- class abacusai.api_class.FileFormat
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AVRO = 'AVRO'
- PARQUET = 'PARQUET'
- TFRECORD = 'TFRECORD'
- TSV = 'TSV'
- CSV = 'CSV'
- ORC = 'ORC'
- JSON = 'JSON'
- ODS = 'ODS'
- XLS = 'XLS'
- GZ = 'GZ'
- ZIP = 'ZIP'
- TAR = 'TAR'
- DOCX = 'DOCX'
- PDF = 'PDF'
- MD = 'md'
- RAR = 'RAR'
- GIF = 'GIF'
- JPEG = 'JPG'
- PNG = 'PNG'
- TIF = 'TIFF'
- NUMBERS = 'NUMBERS'
- PPTX = 'PPTX'
- PPT = 'PPT'
- HTML = 'HTML'
- TXT = 'txt'
- EML = 'eml'
- MP3 = 'MP3'
- MP4 = 'MP4'
- FLV = 'flv'
- MOV = 'mov'
- MPG = 'mpg'
- MPEG = 'mpeg'
- WEBP = 'webp'
- WEBM = 'webm'
- WMV = 'wmv'
- MSG = 'msg'
- class abacusai.api_class.ExperimentationMode
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- RAPID = 'rapid'
- THOROUGH = 'thorough'
- class abacusai.api_class.PersonalizationTrainingMode
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- EXPERIMENTAL = 'EXP'
- PRODUCTION = 'PROD'
- class abacusai.api_class.PersonalizationObjective
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- NDCG = 'ndcg'
- NDCG_5 = 'ndcg@5'
- NDCG_10 = 'ndcg@10'
- MAP = 'map'
- MAP_5 = 'map@5'
- MAP_10 = 'map@10'
- MRR = 'mrr'
- PERSONALIZATION = 'personalization@10'
- COVERAGE = 'coverage'
- class abacusai.api_class.ForecastingObjective
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- ACCURACY = 'w_c_accuracy'
- WAPE = 'wape'
- MAPE = 'mape'
- CMAPE = 'cmape'
- RMSE = 'rmse'
- CV = 'coefficient_of_variation'
- BIAS = 'bias'
- SRMSE = 'srmse'
- class abacusai.api_class.ForecastingFrequency
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- HOURLY = '1H'
- DAILY = '1D'
- WEEKLY_SUNDAY_START = '1W'
- WEEKLY_MONDAY_START = 'W-MON'
- WEEKLY_SATURDAY_START = 'W-SAT'
- MONTH_START = 'MS'
- MONTH_END = '1M'
- QUARTER_START = 'QS'
- QUARTER_END = '1Q'
- YEARLY = '1Y'
- class abacusai.api_class.ForecastingDataSplitType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AUTO = 'Automatic Time Based'
- TIMESTAMP = 'Timestamp Based'
- ITEM = 'Item Based'
- PREDICTION_LENGTH = 'Force Prediction Length'
- L_SHAPED_AUTO = 'L-shaped Split - Automatic Time Based'
- L_SHAPED_TIMESTAMP = 'L-shaped Split - Timestamp Based'
- class abacusai.api_class.ForecastingLossFunction
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- CUSTOM = 'Custom'
- MEAN_ABSOLUTE_ERROR = 'mae'
- NORMALIZED_MEAN_ABSOLUTE_ERROR = 'nmae'
- PEAKS_MEAN_ABSOLUTE_ERROR = 'peaks_mae'
- MEAN_ABSOLUTE_PERCENTAGE_ERROR = 'stable_mape'
- POINTWISE_ACCURACY = 'accuracy'
- ROOT_MEAN_SQUARE_ERROR = 'rmse'
- NORMALIZED_ROOT_MEAN_SQUARE_ERROR = 'nrmse'
- ASYMMETRIC_MEAN_ABSOLUTE_PERCENTAGE_ERROR = 'asymmetric_mape'
- STABLE_STANDARDIZED_MEAN_ABSOLUTE_PERCENTAGE_ERROR = 'stable_standardized_mape_with_cmape'
- GAUSSIAN = 'mle_gaussian_local'
- GAUSSIAN_FULL_COVARIANCE = 'mle_gaussfullcov'
- GUASSIAN_EXPONENTIAL = 'mle_gaussexp'
- MIX_GAUSSIANS = 'mle_gaussmix'
- WEIBULL = 'mle_weibull'
- NEGATIVE_BINOMIAL = 'mle_negbinom'
- LOG_ROOT_MEAN_SQUARE_ERROR = 'log_rmse'
- class abacusai.api_class.ForecastingLocalScaling
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- ZSCORE = 'zscore'
- SLIDING_ZSCORE = 'sliding_zscore'
- LAST_POINT = 'lastpoint'
- MIN_MAX = 'minmax'
- MIN_STD = 'minstd'
- ROBUST = 'robust'
- ITEM = 'item'
- class abacusai.api_class.ForecastingFillMethod
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- BACK = 'BACK'
- MIDDLE = 'MIDDLE'
- FUTURE = 'FUTURE'
- class abacusai.api_class.ForecastingQuanitlesExtensionMethod
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- DIRECT = 'direct'
- QUADRATIC = 'quadratic'
- ANCESTRAL_SIMULATION = 'simulation'
- class abacusai.api_class.TimeseriesAnomalyDataSplitType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AUTO = 'Automatic Time Based'
- TIMESTAMP = 'Fixed Timestamp Based'
- class abacusai.api_class.TimeseriesAnomalyTypeOfAnomaly
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- HIGH_PEAK = 'high_peak'
- LOW_PEAK = 'low_peak'
- class abacusai.api_class.TimeseriesAnomalyUseHeuristic
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- ENABLE = 'enable'
- DISABLE = 'disable'
- AUTOMATIC = 'automatic'
- class abacusai.api_class.NERObjective
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- LOG_LOSS = 'log_loss'
- AUC = 'auc'
- PRECISION = 'precision'
- RECALL = 'recall'
- ANNOTATIONS_PRECISION = 'annotations_precision'
- ANNOTATIONS_RECALL = 'annotations_recall'
- class abacusai.api_class.NERModelType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- PRETRAINED_BERT = 'pretrained_bert'
- PRETRAINED_ROBERTA_27 = 'pretrained_roberta_27'
- PRETRAINED_ROBERTA_43 = 'pretrained_roberta_43'
- PRETRAINED_MULTILINGUAL = 'pretrained_multilingual'
- LEARNED = 'learned'
- class abacusai.api_class.NLPDocumentFormat
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AUTO = 'auto'
- TEXT = 'text'
- DOC = 'doc'
- TOKENS = 'tokens'
- class abacusai.api_class.SentimentType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- VALENCE = 'valence'
- EMOTION = 'emotion'
- class abacusai.api_class.ClusteringImputationMethod
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AUTOMATIC = 'Automatic'
- ZEROS = 'Zeros'
- INTERPOLATE = 'Interpolate'
- class abacusai.api_class.ConnectorType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- FILE = 'FILE'
- DATABASE = 'DATABASE'
- STREAMING = 'STREAMING'
- APPLICATION = 'APPLICATION'
- class abacusai.api_class.ApplicationConnectorType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- GOOGLEANALYTICS = 'GOOGLEANALYTICS'
- GOOGLEDRIVE = 'GOOGLEDRIVE'
- GIT = 'GIT'
- CONFLUENCE = 'CONFLUENCE'
- JIRA = 'JIRA'
- ONEDRIVE = 'ONEDRIVE'
- ZENDESK = 'ZENDESK'
- SLACK = 'SLACK'
- SHAREPOINT = 'SHAREPOINT'
- TEAMS = 'TEAMS'
- ABACUSUSAGEMETRICS = 'ABACUSUSAGEMETRICS'
- MICROSOFTAUTH = 'MICROSOFTAUTH'
- FRESHSERVICE = 'FRESHSERVICE'
- ZENDESKSUNSHINEMESSAGING = 'ZENDESKSUNSHINEMESSAGING'
- GOOGLEDRIVEUSER = 'GOOGLEDRIVEUSER'
- GOOGLEWORKSPACEUSER = 'GOOGLEWORKSPACEUSER'
- GMAILUSER = 'GMAILUSER'
- GOOGLECALENDAR = 'GOOGLECALENDAR'
- GOOGLESHEETS = 'GOOGLESHEETS'
- GOOGLEDOCS = 'GOOGLEDOCS'
- TEAMSSCRAPER = 'TEAMSSCRAPER'
- GITHUBUSER = 'GITHUBUSER'
- OKTASAML = 'OKTASAML'
- BOX = 'BOX'
- class abacusai.api_class.StreamingConnectorType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- KAFKA = 'KAFKA'
- class abacusai.api_class.PythonFunctionArgumentType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- FEATURE_GROUP = 'FEATURE_GROUP'
- INTEGER = 'INTEGER'
- STRING = 'STRING'
- BOOLEAN = 'BOOLEAN'
- FLOAT = 'FLOAT'
- JSON = 'JSON'
- LIST = 'LIST'
- DATASET_ID = 'DATASET_ID'
- MODEL_ID = 'MODEL_ID'
- FEATURE_GROUP_ID = 'FEATURE_GROUP_ID'
- MONITOR_ID = 'MONITOR_ID'
- BATCH_PREDICTION_ID = 'BATCH_PREDICTION_ID'
- DEPLOYMENT_ID = 'DEPLOYMENT_ID'
- class abacusai.api_class.PythonFunctionOutputArgumentType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- NTEGER = 'INTEGER'
- STRING = 'STRING'
- BOOLEAN = 'BOOLEAN'
- FLOAT = 'FLOAT'
- JSON = 'JSON'
- LIST = 'LIST'
- DATASET_ID = 'DATASET_ID'
- MODEL_ID = 'MODEL_ID'
- FEATURE_GROUP_ID = 'FEATURE_GROUP_ID'
- MONITOR_ID = 'MONITOR_ID'
- BATCH_PREDICTION_ID = 'BATCH_PREDICTION_ID'
- DEPLOYMENT_ID = 'DEPLOYMENT_ID'
- ANY = 'ANY'
- class abacusai.api_class.VectorStoreTextEncoder
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- E5 = 'E5'
- OPENAI = 'OPENAI'
- OPENAI_COMPACT = 'OPENAI_COMPACT'
- OPENAI_LARGE = 'OPENAI_LARGE'
- SENTENCE_BERT = 'SENTENCE_BERT'
- E5_SMALL = 'E5_SMALL'
- CODE_BERT = 'CODE_BERT'
- class abacusai.api_class.LLMName
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- OPENAI_GPT4 = 'OPENAI_GPT4'
- OPENAI_GPT4_32K = 'OPENAI_GPT4_32K'
- OPENAI_GPT4_128K = 'OPENAI_GPT4_128K'
- OPENAI_GPT4_128K_LATEST = 'OPENAI_GPT4_128K_LATEST'
- OPENAI_GPT4O = 'OPENAI_GPT4O'
- OPENAI_GPT4O_MINI = 'OPENAI_GPT4O_MINI'
- OPENAI_GPT3_5 = 'OPENAI_GPT3_5'
- OPENAI_GPT3_5_TEXT = 'OPENAI_GPT3_5_TEXT'
- LLAMA3_1_405B = 'LLAMA3_1_405B'
- LLAMA3_1_70B = 'LLAMA3_1_70B'
- LLAMA3_1_8B = 'LLAMA3_1_8B'
- LLAMA3_3_70B = 'LLAMA3_3_70B'
- LLAMA3_LARGE_CHAT = 'LLAMA3_LARGE_CHAT'
- CLAUDE_V3_OPUS = 'CLAUDE_V3_OPUS'
- CLAUDE_V3_SONNET = 'CLAUDE_V3_SONNET'
- CLAUDE_V3_HAIKU = 'CLAUDE_V3_HAIKU'
- CLAUDE_V3_5_SONNET = 'CLAUDE_V3_5_SONNET'
- CLAUDE_V3_5_HAIKU = 'CLAUDE_V3_5_HAIKU'
- GEMINI_1_5_PRO = 'GEMINI_1_5_PRO'
- GEMINI_2_FLASH = 'GEMINI_2_FLASH'
- GEMINI_2_FLASH_THINKING = 'GEMINI_2_FLASH_THINKING'
- ABACUS_SMAUG3 = 'ABACUS_SMAUG3'
- ABACUS_DRACARYS = 'ABACUS_DRACARYS'
- QWEN_2_5_32B = 'QWEN_2_5_32B'
- QWEN_2_5_32B_BASE = 'QWEN_2_5_32B_BASE'
- QWEN_2_5_72B = 'QWEN_2_5_72B'
- QWQ_32B = 'QWQ_32B'
- GEMINI_1_5_FLASH = 'GEMINI_1_5_FLASH'
- XAI_GROK = 'XAI_GROK'
- DEEPSEEK_V3 = 'DEEPSEEK_V3'
- class abacusai.api_class.MonitorAlertType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- ACCURACY_BELOW_THRESHOLD = 'AccuracyBelowThreshold'
- FEATURE_DRIFT = 'FeatureDrift'
- DATA_INTEGRITY_VIOLATIONS = 'DataIntegrityViolations'
- BIAS_VIOLATIONS = 'BiasViolations'
- HISTORY_LENGTH_DRIFT = 'HistoryLengthDrift'
- TARGET_DRIFT = 'TargetDrift'
- PREDICTION_COUNT = 'PredictionCount'
- class abacusai.api_class.FeatureDriftType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- KL = 'kl'
- KS = 'ks'
- WS = 'ws'
- JS = 'js'
- PSI = 'psi'
- CHI_SQUARE = 'chi_square'
- CSI = 'csi'
- class abacusai.api_class.DataIntegrityViolationType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- NULL_VIOLATIONS = 'null_violations'
- RANGE_VIOLATIONS = 'range_violations'
- CATEGORICAL_RANGE_VIOLATION = 'categorical_range_violations'
- TOTAL_VIOLATIONS = 'total_violations'
- class abacusai.api_class.BiasType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- DEMOGRAPHIC_PARITY = 'demographic_parity'
- EQUAL_OPPORTUNITY = 'equal_opportunity'
- GROUP_BENEFIT_EQUALITY = 'group_benefit'
- TOTAL = 'total'
- class abacusai.api_class.AlertActionType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- EMAIL = 'Email'
- class abacusai.api_class.PythonFunctionType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- FEATURE_GROUP = 'FEATURE_GROUP'
- PLOTLY_FIG = 'PLOTLY_FIG'
- STEP_FUNCTION = 'STEP_FUNCTION'
- class abacusai.api_class.EvalArtifactType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- FORECASTING_ACCURACY = 'bar_chart'
- FORECASTING_VOLUME = 'bar_chart_volume'
- FORECASTING_HISTORY_LENGTH_ACCURACY = 'bar_chart_accuracy_by_history'
- class abacusai.api_class.FieldDescriptorType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- STRING = 'STRING'
- INTEGER = 'INTEGER'
- FLOAT = 'FLOAT'
- BOOLEAN = 'BOOLEAN'
- DATETIME = 'DATETIME'
- DATE = 'DATE'
- class abacusai.api_class.WorkflowNodeInputType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- USER_INPUT = 'USER_INPUT'
- WORKFLOW_VARIABLE = 'WORKFLOW_VARIABLE'
- IGNORE = 'IGNORE'
- CONSTANT = 'CONSTANT'
- class abacusai.api_class.WorkflowNodeOutputType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- ATTACHMENT = 'ATTACHMENT'
- BOOLEAN = 'BOOLEAN'
- FLOAT = 'FLOAT'
- INTEGER = 'INTEGER'
- DICT = 'DICT'
- LIST = 'LIST'
- STRING = 'STRING'
- RUNTIME_SCHEMA = 'RUNTIME_SCHEMA'
- ANY = 'ANY'
- classmethod normalize_type(python_type)
- Parameters:
python_type (Union[str, type, None, WorkflowNodeOutputType])
- Return type:
- class abacusai.api_class.OcrMode
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AUTO = 'AUTO'
- DEFAULT = 'DEFAULT'
- LAYOUT = 'LAYOUT'
- SCANNED = 'SCANNED'
- COMPREHENSIVE = 'COMPREHENSIVE'
- COMPREHENSIVE_V2 = 'COMPREHENSIVE_V2'
- COMPREHENSIVE_TABLE_MD = 'COMPREHENSIVE_TABLE_MD'
- COMPREHENSIVE_FORM_MD = 'COMPREHENSIVE_FORM_MD'
- COMPREHENSIVE_FORM_AND_TABLE_MD = 'COMPREHENSIVE_FORM_AND_TABLE_MD'
- TESSERACT_FAST = 'TESSERACT_FAST'
- LLM = 'LLM'
- AUGMENTED_LLM = 'AUGMENTED_LLM'
- classmethod aws_ocr_modes()
- class abacusai.api_class.DocumentType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- SIMPLE_TEXT = 'SIMPLE_TEXT'
- TEXT = 'TEXT'
- TABLES_AND_FORMS = 'TABLES_AND_FORMS'
- EMBEDDED_IMAGES = 'EMBEDDED_IMAGES'
- SCANNED_TEXT = 'SCANNED_TEXT'
- classmethod is_ocr_forced(document_type)
- Parameters:
document_type (DocumentType)
- class abacusai.api_class.StdDevThresholdType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- ABSOLUTE = 'ABSOLUTE'
- PERCENTILE = 'PERCENTILE'
- STDDEV = 'STDDEV'
- class abacusai.api_class.DataType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- INTEGER = 'integer'
- FLOAT = 'float'
- STRING = 'string'
- DATE = 'date'
- DATETIME = 'datetime'
- BOOLEAN = 'boolean'
- LIST = 'list'
- STRUCT = 'struct'
- NULL = 'null'
- BINARY = 'binary'
- class abacusai.api_class.AgentInterface
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- DEFAULT = 'DEFAULT'
- CHAT = 'CHAT'
- MATRIX = 'MATRIX'
- AUTONOMOUS = 'AUTONOMOUS'
- class abacusai.api_class.WorkflowNodeTemplateType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- TRIGGER = 'trigger'
- DEFAULT = 'default'
- class abacusai.api_class.ProjectConfigType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- CONSTRAINTS = 'CONSTRAINTS'
- CHAT_FEEDBACK = 'CHAT_FEEDBACK'
- REVIEW_MODE = 'REVIEW_MODE'
- class abacusai.api_class.CPUSize
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- SMALL = 'small'
- MEDIUM = 'medium'
- LARGE = 'large'
- class abacusai.api_class.MemorySize
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- SMALL = 16
- MEDIUM = 32
- LARGE = 64
- XLARGE = 128
- classmethod from_value(value)
- class abacusai.api_class.ResponseSectionType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- AGENT_FLOW_BUTTON = 'agent_flow_button'
- ATTACHMENTS = 'attachments'
- BASE64_IMAGE = 'base64_image'
- CHART = 'chart'
- CODE = 'code'
- COLLAPSIBLE_COMPONENT = 'collapsible_component'
- IMAGE_URL = 'image_url'
- RUNTIME_SCHEMA = 'runtime_schema'
- LIST = 'list'
- TABLE = 'table'
- TEXT = 'text'
- class abacusai.api_class.CodeLanguage
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- PYTHON = 'python'
- SQL = 'sql'
- class abacusai.api_class.DeploymentConversationType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- CHAT_LLM = 'CHATLLM'
- SIMPLE_AGENT = 'SIMPLE_AGENT'
- COMPLEX_AGENT = 'COMPLEX_AGENT'
- WORKFLOW_AGENT = 'WORKFLOW_AGENT'
- COPILOT = 'COPILOT'
- AGENT_CONTROLLER = 'AGENT_CONTROLLER'
- CODE_LLM = 'CODE_LLM'
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class._ApiClassFactory
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class = None
- config_class_key = None
- config_class_map
- class abacusai.api_class.DocumentProcessingConfig
Bases:
abacusai.api_class.abstract.ApiClass
Document processing configuration.
- Parameters:
document_type (DocumentType) – Type of document. Can be one of Text, Tables and Forms, Embedded Images, etc. If not specified, type will be decided automatically.
highlight_relevant_text (bool) – Whether to extract bounding boxes and highlight relevant text in search results. Defaults to False.
extract_bounding_boxes (bool) – Whether to perform OCR and extract bounding boxes. If False, no OCR will be done but only the embedded text from digital documents will be extracted. Defaults to False.
ocr_mode (OcrMode) – OCR mode. There are different OCR modes available for different kinds of documents and use cases. This option only takes effect when extract_bounding_boxes is True.
use_full_ocr (bool) – Whether to perform full OCR. If True, OCR will be performed on the full page. If False, OCR will be performed on the non-text regions only. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.
remove_header_footer (bool) – Whether to remove headers and footers. Defaults to False. This option only takes effect when extract_bounding_boxes is True.
remove_watermarks (bool) – Whether to remove watermarks. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.
convert_to_markdown (bool) – Whether to convert extracted text to markdown. Defaults to False. This option only takes effect when extract_bounding_boxes is True.
mask_pii (bool) – Whether to mask personally identifiable information (PII) in the document text/tokens. Defaults to False.
- document_type: abacusai.api_class.enums.DocumentType = None
- ocr_mode: abacusai.api_class.enums.OcrMode
- __post_init__()
- _detect_ocr_mode()
- class abacusai.api_class.SamplingConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for the sampling config of a feature group
- sampling_method: abacusai.api_class.enums.SamplingMethodType = None
- classmethod _get_builder()
- __post_init__()
- class abacusai.api_class.NSamplingConfig
Bases:
SamplingConfig
The number of distinct values of the key columns to include in the sample, or number of rows if key columns not specified.
- Parameters:
- __post_init__()
- class abacusai.api_class.PercentSamplingConfig
Bases:
SamplingConfig
The fraction of distinct values of the feature group to include in the sample.
- Parameters:
- __post_init__()
- class abacusai.api_class._SamplingConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_class_key = 'sampling_method'
- config_abstract_class
- config_class_map
- class abacusai.api_class.MergeConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for the merge config of a feature group
- merge_mode: abacusai.api_class.enums.MergeMode = None
- classmethod _get_builder()
- __post_init__()
- class abacusai.api_class.LastNMergeConfig
Bases:
MergeConfig
Merge LAST N chunks/versions of an incremental dataset.
- Parameters:
- __post_init__()
- class abacusai.api_class.TimeWindowMergeConfig
Bases:
MergeConfig
Merge rows within a given timewindow of the most recent timestamp
- Parameters:
- __post_init__()
- class abacusai.api_class._MergeConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_class_key = 'merge_mode'
- config_abstract_class
- config_class_map
- class abacusai.api_class.OperatorConfig
Bases:
abacusai.api_class.abstract.ApiClass
Configuration for a template Feature Group Operation
- operator_type: abacusai.api_class.enums.OperatorType = None
- classmethod _get_builder()
- __post_init__()
- class abacusai.api_class.UnpivotConfig
Bases:
OperatorConfig
Unpivot Columns in a FeatureGroup.
- Parameters:
columns (List[str]) – Which columns to unpivot.
index_column (str) – Name of new column containing the unpivoted column names as its values
value_column (str) – Name of new column containing the row values that were unpivoted.
exclude (bool) – If True, the unpivoted columns are all the columns EXCEPT the ones in the columns argument. Default is False.
- __post_init__()
- class abacusai.api_class.MarkdownConfig
Bases:
OperatorConfig
Transform a input column to a markdown column.
- Parameters:
input_column (str) – Name of input column to transform.
output_column (str) – Name of output column to store transformed data.
input_column_type (MarkdownOperatorInputType) – Type of input column to transform.
- input_column_type: abacusai.api_class.enums.MarkdownOperatorInputType = None
- __post_init__()
- class abacusai.api_class.CrawlerTransformConfig
Bases:
OperatorConfig
Transform a input column of urls to html text
- Parameters:
input_column (str) – Name of input column to transform.
output_column (str) – Name of output column to store transformed data.
depth_column (str) – Increasing depth explores more links, capturing more content
disable_host_restriction (bool) – If True, will not restrict crawling to the same host.
honour_website_rules (bool) – If True, will respect robots.txt rules.
user_agent (str) – If provided, will use this user agent instead of randomly selecting one.
- __post_init__()
- class abacusai.api_class.ExtractDocumentDataConfig
Bases:
OperatorConfig
Extracts data from documents.
- Parameters:
doc_id_column (str) – Name of input document ID column.
document_column (str) – Name of the input document column which contains the page infos. This column will be transformed to include the document processing config in the output feature group.
document_processing_config (DocumentProcessingConfig) – Document processing configuration.
- document_processing_config: abacusai.api_class.dataset.DocumentProcessingConfig = None
- __post_init__()
- class abacusai.api_class.DataGenerationConfig
Bases:
OperatorConfig
Generate synthetic data using a model for finetuning an LLM.
- Parameters:
prompt_col (str) – Name of the input prompt column.
completion_col (str) – Name of the output completion column.
description_col (str) – Name of the description column.
id_col (str) – Name of the identifier column.
generation_instructions (str) – Instructions for the data generation model.
temperature (float) – Sampling temperature for the model.
fewshot_examples (int) – Number of fewshot examples used to prompt the model.
concurrency (int) – Number of concurrent processes.
examples_per_target (int) – Number of examples per target.
subset_size (Optional[int]) – Size of the subset to use for generation.
verify_response (bool) – Whether to verify the response.
token_budget (int) – Token budget for generation.
oversample (bool) – Whether to oversample the data.
documentation_char_limit (int) – Character limit for documentation.
frequency_penalty (float) – Penalty for frequency of token appearance.
model (str) – Model to use for data generation.
seed (Optional[int]) – Seed for random number generation.
- __post_init__()
- class abacusai.api_class.UnionTransformConfig
Bases:
OperatorConfig
Takes Union of current feature group with 1 or more selected feature groups of same type.
- Parameters:
- __post_init__()
- class abacusai.api_class._OperatorConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
A class to select and return the the correct type of Operator Config based on a serialized OperatorConfig instance.
- config_abstract_class
- config_class_key = 'operator_type'
- config_class_map
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class._ApiClassFactory
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class = None
- config_class_key = None
- config_class_map
- class abacusai.api_class.TrainingConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for the training config options used to train the model.
- problem_type: abacusai.api_class.enums.ProblemType = None
- classmethod _get_builder()
- class abacusai.api_class.PersonalizationTrainingConfig
Bases:
TrainingConfig
Training config for the PERSONALIZATION problem type
- Parameters:
objective (PersonalizationObjective) – Ranking scheme used to select final best model.
sort_objective (PersonalizationObjective) – Ranking scheme used to sort models on the metrics page.
training_mode (PersonalizationTrainingMode) – whether to train in production or experimental mode. Defaults to EXP.
target_action_types (List[str]) – List of action types to use as targets for training.
target_action_weights (Dict[str, float]) – Dictionary of action types to weights for training.
session_event_types (List[str]) – List of event types to treat as occurrences of sessions.
test_split (int) – Percent of dataset to use for test data. We support using a range between 6% to 20% of your dataset to use as test data.
recent_days_for_training (int) – Limit training data to a certain latest number of days.
training_start_date (str) – Only consider training interaction data after this date. Specified in the timezone of the dataset.
test_on_user_split (bool) – Use user splits instead of using time splits, when validating and testing the model.
test_split_on_last_k_items (bool) – Use last k items instead of global timestamp splits, when validating and testing the model.
test_last_items_length (int) – Number of items to leave out for each user when using leave k out folds.
test_window_length_hours (int) – Duration (in hours) of most recent time window to use when validating and testing the model.
explicit_time_split (bool) – Sets an explicit time-based test boundary.
test_row_indicator (str) – Column indicating which rows to use for training (TRAIN), validation (VAL) and testing (TEST).
full_data_retraining (bool) – Train models separately with all the data.
sequential_training (bool) – Train a mode sequentially through time.
data_split_feature_group_table_name (str) – Specify the table name of the feature group to export training data with the fold column.
optimized_event_type (str) – The final event type to optimize for and compute metrics on.
dropout_rate (int) – Dropout rate for neural network.
batch_size (BatchSize) – Batch size for neural network.
disable_transformer (bool) – Disable training the transformer algorithm.
disable_gpu (boo) – Disable training on GPU.
filter_history (bool) – Do not recommend items the user has already interacted with.
action_types_exclusion_days (Dict[str, float]) – Mapping from action type to number of days for which we exclude previously interacted items from prediction
session_dedupe_mins (float) – Minimum number of minutes between two sessions for a user.
max_history_length (int) – Maximum length of user-item history to include user in training examples.
compute_rerank_metrics (bool) – Compute metrics based on rerank results.
add_time_features (bool) – Include interaction time as a feature.
disable_timestamp_scalar_features (bool) – Exclude timestamp scalar features.
compute_session_metrics (bool) – Evaluate models based on how well they are able to predict the next session of interactions.
max_user_history_len_percentile (int) – Filter out users with history length above this percentile.
downsample_item_popularity_percentile (float) – Downsample items more popular than this percentile.
use_user_id_feature (bool) – Use user id as a feature in CTR models.
min_item_history (int) – Minimum number of interactions an item must have to be included in training.
query_column (str) – Name of column in the interactions table that represents a natural language query, e.g. ‘blue t-shirt’.
item_query_column (str) – Name of column in the item catalog that will be matched to the query column in the interactions table.
include_item_id_feature (bool) – Add Item-Id to the input features of the model. Applicable for Embedding distance and CTR models.
- objective: abacusai.api_class.enums.PersonalizationObjective = None
- sort_objective: abacusai.api_class.enums.PersonalizationObjective = None
- training_mode: abacusai.api_class.enums.PersonalizationTrainingMode = None
- batch_size: abacusai.api_class.enums.BatchSize = None
- __post_init__()
- class abacusai.api_class.RegressionTrainingConfig
Bases:
TrainingConfig
Training config for the PREDICTIVE_MODELING problem type
- Parameters:
objective (RegressionObjective) – Ranking scheme used to select final best model.
sort_objective (RegressionObjective) – Ranking scheme used to sort models on the metrics page.
tree_hpo_mode – (RegressionTreeHPOMode): Turning off Rapid Experimentation will take longer to train.
type_of_split (RegressionTypeOfSplit) – Type of data splitting into train/test (validation also).
test_split (int) – Percent of dataset to use for test data. We support using a range between 5% to 20% of your dataset to use as test data.
disable_test_val_fold (bool) – Do not create a TEST_VAL set. All records which would be part of the TEST_VAL fold otherwise, remain in the TEST fold.
k_fold_cross_validation (bool) – Use this to force k-fold cross validation bagging on or off.
num_cv_folds (int) – Specify the value of k in k-fold cross validation.
timestamp_based_splitting_column (str) – Timestamp column selected for splitting into test and train.
timestamp_based_splitting_method (RegressionTimeSplitMethod) – Method of selecting TEST set, top percentile wise or after a given timestamp.
test_splitting_timestamp (str) – Rows with timestamp greater than this will be considered to be in the test set.
sampling_unit_keys (List[str]) – Constrain train/test separation to partition a column.
test_row_indicator (str) – Column indicating which rows to use for training (TRAIN) and testing (TEST). Validation (VAL) can also be specified.
full_data_retraining (bool) – Train models separately with all the data.
rebalance_classes (bool) – Class weights are computed as the inverse of the class frequency from the training dataset when this option is selected as “Yes”. It is useful when the classes in the dataset are unbalanced. Re-balancing classes generally boosts recall at the cost of precision on rare classes.
rare_class_augmentation_threshold (float) – Augments any rare class whose relative frequency with respect to the most frequent class is less than this threshold. Default = 0.1 for classification problems with rare classes.
augmentation_strategy (RegressionAugmentationStrategy) – Strategy to deal with class imbalance and data augmentation.
training_rows_downsample_ratio (float) – Uses this ratio to train on a sample of the dataset provided.
active_labels_column (str) – Specify a column to use as the active columns in a multi label setting.
min_categorical_count (int) – Minimum threshold to consider a value different from the unknown placeholder.
sample_weight (str) – Specify a column to use as the weight of a sample for training and eval.
numeric_clipping_percentile (float) – Uses this option to clip the top and bottom x percentile of numeric feature columns where x is the value of this option.
target_transform (RegressionTargetTransform) – Specify a transform (e.g. log, quantile) to apply to the target variable.
ignore_datetime_features (bool) – Remove all datetime features from the model. Useful while generalizing to different time periods.
max_text_words (int) – Maximum number of words to use from text fields.
perform_feature_selection (bool) – If enabled, additional algorithms which support feature selection as a pretraining step will be trained separately with the selected subset of features. The details about their selected features can be found in their respective logs.
feature_selection_intensity (int) – This determines the strictness with which features will be filtered out. 1 being very lenient (more features kept), 100 being very strict.
batch_size (BatchSize) – Batch size.
dropout_rate (int) – Dropout percentage rate.
pretrained_model_name (str) – Enable algorithms which process text using pretrained multilingual NLP models.
pretrained_llm_name (str) – Enable algorithms which process text using pretrained large language models.
is_multilingual (bool) – Enable algorithms which process text using pretrained multilingual NLP models.
loss_function (RegressionLossFunction) – Loss function to be used as objective for model training.
loss_parameters (str) – Loss function params in format <key>=<value>;<key>=<value>;…..
target_encode_categoricals (bool) – Use this to turn target encoding on categorical features on or off.
drop_original_categoricals (bool) – This option helps us choose whether to also feed the original label encoded categorical columns to the mdoels along with their target encoded versions.
monotonically_increasing_features (List[str]) – Constrain the model such that it behaves as if the target feature is monotonically increasing with the selected features
monotonically_decreasing_features (List[str]) – Constrain the model such that it behaves as if the target feature is monotonically decreasing with the selected features
data_split_feature_group_table_name (str) – Specify the table name of the feature group to export training data with the fold column.
custom_loss_functions (List[str]) – Registered custom losses available for selection.
custom_metrics (List[str]) – Registered custom metrics available for selection.
partial_dependence_analysis (PartialDependenceAnalysis) – Specify whether to run partial dependence plots for all features or only some features.
do_masked_language_model_pretraining (bool) – Specify whether to run a masked language model unsupervised pretraining step before supervized training in certain supported algorithms which use BERT-like backbones.
max_tokens_in_sentence (int) – Specify the max tokens to be kept in a sentence based on the truncation strategy.
truncation_strategy (str) – What strategy to use to deal with text rows with more than a given number of tokens (if num of tokens is more than “max_tokens_in_sentence”).
- objective: abacusai.api_class.enums.RegressionObjective = None
- sort_objective: abacusai.api_class.enums.RegressionObjective = None
- tree_hpo_mode: abacusai.api_class.enums.RegressionTreeHPOMode = None
- partial_dependence_analysis: abacusai.api_class.enums.PartialDependenceAnalysis = None
- type_of_split: abacusai.api_class.enums.RegressionTypeOfSplit = None
- timestamp_based_splitting_method: abacusai.api_class.enums.RegressionTimeSplitMethod = None
- augmentation_strategy: abacusai.api_class.enums.RegressionAugmentationStrategy = None
- target_transform: abacusai.api_class.enums.RegressionTargetTransform = None
- batch_size: abacusai.api_class.enums.BatchSize = None
- loss_function: abacusai.api_class.enums.RegressionLossFunction = None
- __post_init__()
- class abacusai.api_class.ForecastingTrainingConfig
Bases:
TrainingConfig
Training config for the FORECASTING problem type
- Parameters:
prediction_length (int) – How many timesteps in the future to predict.
objective (ForecastingObjective) – Ranking scheme used to select final best model.
sort_objective (ForecastingObjective) – Ranking scheme used to sort models on the metrics page.
forecast_frequency (ForecastingFrequency) – Forecast frequency.
probability_quantiles (List[float]) – Prediction quantiles.
force_prediction_length (int) – Force length of test window to be the same as prediction length.
filter_items (bool) – Filter items with small history and volume.
enable_feature_selection (bool) – Enable feature selection.
enable_padding (bool) – Pad series to the max_date of the dataset
enable_cold_start (bool) – Enable cold start forecasting by training/predicting for zero history items.
enable_multiple_backtests (bool) – Whether to enable multiple backtesting or not.
num_backtesting_windows (int) – Total backtesting windows to use for the training.
backtesting_window_step_size (int) – Use this step size to shift backtesting windows for model training.
full_data_retraining (bool) – Train models separately with all the data.
additional_forecast_keys – List[str]: List of categoricals in timeseries that can act as multi-identifier.
experimentation_mode (ExperimentationMode) – Selecting Thorough Experimentation will take longer to train.
type_of_split (ForecastingDataSplitType) – Type of data splitting into train/test.
test_by_item (bool) – Partition train/test data by item rather than time if true.
test_start (str) – Limit training data to dates before the given test start.
test_split (int) – Percent of dataset to use for test data. We support using a range between 5% to 20% of your dataset to use as test data.
loss_function (ForecastingLossFunction) – Loss function for training neural network.
underprediction_weight (float) – Weight for underpredictions
disable_networks_without_analytic_quantiles (bool) – Disable neural networks, which quantile functions do not have analytic expressions (e.g, mixture models)
initial_learning_rate (float) – Initial learning rate.
l2_regularization_factor (float) – L2 regularization factor.
dropout_rate (int) – Dropout percentage rate.
recurrent_layers (int) – Number of recurrent layers to stack in network.
recurrent_units (int) – Number of units in each recurrent layer.
convolutional_layers (int) – Number of convolutional layers to stack on top of recurrent layers in network.
convolution_filters (int) – Number of filters in each convolution.
local_scaling_mode (ForecastingLocalScaling) – Options to make NN inputs stationary in high dynamic range datasets.
zero_predictor (bool) – Include subnetwork to classify points where target equals zero.
skip_missing (bool) – Make the RNN ignore missing entries rather instead of processing them.
batch_size (ForecastingBatchSize) – Batch size.
batch_renormalization (bool) – Enable batch renormalization between layers.
history_length (int) – While training, how much history to consider.
prediction_step_size (int) – Number of future periods to include in objective for each training sample.
training_point_overlap (float) – Amount of overlap to allow between training samples.
max_scale_context (int) – Maximum context to use for local scaling.
quantiles_extension_method (ForecastingQuanitlesExtensionMethod) – Quantile extension method
number_of_samples (int) – Number of samples for ancestral simulation
symmetrize_quantiles (bool) – Force symmetric quantiles (like in Gaussian distribution)
use_log_transforms (bool) – Apply logarithmic transformations to input data.
smooth_history (float) – Smooth (low pass filter) the timeseries.
local_scale_target (bool) – Using per training/prediction window target scaling.
use_clipping (bool) – Apply clipping to input data to stabilize the training.
timeseries_weight_column (str) – If set, we use the values in this column from timeseries data to assign time dependent item weights during training and evaluation.
item_attributes_weight_column (str) – If set, we use the values in this column from item attributes data to assign weights to items during training and evaluation.
use_timeseries_weights_in_objective (bool) – If True, we include weights from column set as “TIMESERIES WEIGHT COLUMN” in objective functions.
use_item_weights_in_objective (bool) – If True, we include weights from column set as “ITEM ATTRIBUTES WEIGHT COLUMN” in objective functions.
skip_timeseries_weight_scaling (bool) – If True, we will avoid normalizing the weights.
timeseries_loss_weight_column (str) – Use value in this column to weight the loss while training.
use_item_id (bool) – Include a feature to indicate the item being forecast.
use_all_item_totals (bool) – Include as input total target across items.
handle_zeros_as_missing_values (bool) – If True, handle zero values in demand as missing data.
datetime_holiday_calendars (List[HolidayCalendars]) – Holiday calendars to augment training with.
fill_missing_values (List[List[dict]]) – Strategy for filling in missing values.
enable_clustering (bool) – Enable clustering in forecasting.
data_split_feature_group_table_name (str) – Specify the table name of the feature group to export training data with the fold column.
custom_loss_functions (List[str]) – Registered custom losses available for selection.
custom_metrics (List[str]) – Registered custom metrics available for selection.
return_fractional_forecasts – Use this to return fractional forecast values while prediction
allow_training_with_small_history – Allows training with fewer than 100 rows in the dataset
- objective: abacusai.api_class.enums.ForecastingObjective = None
- sort_objective: abacusai.api_class.enums.ForecastingObjective = None
- forecast_frequency: abacusai.api_class.enums.ForecastingFrequency = None
- experimentation_mode: abacusai.api_class.enums.ExperimentationMode = None
- type_of_split: abacusai.api_class.enums.ForecastingDataSplitType = None
- loss_function: abacusai.api_class.enums.ForecastingLossFunction = None
- local_scaling_mode: abacusai.api_class.enums.ForecastingLocalScaling = None
- batch_size: abacusai.api_class.enums.BatchSize = None
- quantiles_extension_method: abacusai.api_class.enums.ForecastingQuanitlesExtensionMethod = None
- datetime_holiday_calendars: List[abacusai.api_class.enums.HolidayCalendars] = None
- __post_init__()
- class abacusai.api_class.NamedEntityExtractionTrainingConfig
Bases:
TrainingConfig
Training config for the NAMED_ENTITY_EXTRACTION problem type
- Parameters:
llm_for_ner (NERForLLM) – LLM to use for NER from among available LLM
test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.
test_row_indicator (str) – Column indicating which rows to use for training (TRAIN) and testing (TEST).
active_labels_column (str) – Entities that have been marked in a particular text
document_format (NLPDocumentFormat) – Format of the input documents.
minimum_bounding_box_overlap_ratio (float) – Tokens are considered to belong to annotation if the user bounding box is provided and ratio of (token_bounding_box ∩ annotation_bounding_box) / token_bounding_area is greater than the provided value.
save_predicted_pdf (bool) – Whether to save predicted PDF documents
enhanced_ocr (bool) – Enhanced text extraction from predicted digital documents
additional_extraction_instructions (str) – Additional instructions to guide the LLM in extracting the entities. Only used with LLM algorithms.
- llm_for_ner: abacusai.api_class.enums.LLMName = None
- document_format: abacusai.api_class.enums.NLPDocumentFormat = None
- __post_init__()
- class abacusai.api_class.NaturalLanguageSearchTrainingConfig
Bases:
TrainingConfig
Training config for the NATURAL_LANGUAGE_SEARCH problem type
- Parameters:
abacus_internal_model (bool) – Use a Abacus.AI LLM to answer questions about your data without using any external APIs
num_completion_tokens (int) – Default for maximum number of tokens for chat answers. Reducing this will get faster responses which are more succinct
larger_embeddings (bool) – Use a higher dimension embedding model.
search_chunk_size (int) – Chunk size for indexing the documents.
chunk_overlap_fraction (float) – Overlap in chunks while indexing the documents.
index_fraction (float) – Fraction of the chunk to use for indexing.
- __post_init__()
- class abacusai.api_class.ChatLLMTrainingConfig
Bases:
TrainingConfig
Training config for the CHAT_LLM problem type
- Parameters:
document_retrievers (List[str]) – List of names or IDs of document retrievers to use as vector stores of information for RAG responses.
num_completion_tokens (int) – Default for maximum number of tokens for chat answers. Reducing this will get faster responses which are more succinct.
temperature (float) – The generative LLM temperature.
retrieval_columns (list) – Include the metadata column values in the retrieved search results.
filter_columns (list) – Allow users to filter the document retrievers on these metadata columns.
include_general_knowledge (bool) – Allow the LLM to rely not just on RAG search results, but to fall back on general knowledge. Disabled by default.
enable_web_search (bool) – Allow the LLM to use Web Search Engines to retrieve information for better results.
behavior_instructions (str) – Customize the overall behaviour of the model. This controls things like - when to execute code (if enabled), write sql query, search web (if enabled), etc.
response_instructions (str) – Customized instructions for how the model should respond inlcuding the format, persona and tone of the answers.
enable_llm_rewrite (bool) – If enabled, an LLM will rewrite the RAG queries sent to document retriever. Disabled by default.
column_filtering_instructions (str) – Instructions for a LLM call to automatically generate filter expressions on document metadata to retrieve relevant documents for the conversation.
keyword_requirement_instructions (str) – Instructions for a LLM call to automatically generate keyword requirements to retrieve relevant documents for the conversation.
query_rewrite_instructions (str) – Special instructions for the LLM which rewrites the RAG query.
max_search_results (int) – Maximum number of search results in the retrieval augmentation step. If we know that the questions are likely to have snippets which are easily matched in the documents, then a lower number will help with accuracy.
data_feature_group_ids – (List[str]): List of feature group IDs to use to possibly query for the ChatLLM. The created ChatLLM is commonly referred to as DataLLM.
data_prompt_context (str) – Prompt context for the data feature group IDs.
data_prompt_table_context (Dict[str, str]) – Dict of table name and table context pairs to provide table wise context for each structured data table.
data_prompt_column_context (Dict[str, str]) – Dict of ‘table_name.column_name’ and ‘column_context’ pairs to provide column context for some selected columns in the selected structured data table. This replaces the default auto-generated information about the column data.
hide_sql_and_code (bool) – When running data queries, this will hide the generated SQL and Code in the response.
disable_data_summarization (bool) – After executing a query summarize the reponse and reply back with only the table and query run.
data_columns_to_ignore (List[str]) – Columns to ignore while encoding information about structured data tables in context for the LLM. A list of strings of format “<table_name>.<column_name>”
search_score_cutoff (float) – Minimum search score to consider a document as a valid search result.
include_bm25_retrieval (bool) – Combine BM25 search score with vector search using reciprocal rank fusion.
database_connector_id (str) – Database connector ID to use for connecting external database that gives access to structured data to the LLM.
database_connector_tables (List[str]) – List of tables to use from the database connector for the ChatLLM.
enable_code_execution (bool) – Enable python code execution in the ChatLLM. This equips the LLM with a python kernel in which all its code is executed.
enable_response_caching (bool) – Enable caching of LLM responses to speed up response times and improve reproducibility.
unknown_answer_phrase (str) – Fallback response when the LLM can’t find an answer.
enable_tool_bar (bool) – Enable the tool bar in Enterprise ChatLLM to provide additional functionalities like tool_use, web_search, image_gen, etc.
enable_inline_source_citations (bool) – Enable inline citations of the sources in the response.
response_format – (str): When set to ‘JSON’, the LLM will generate a JSON formatted string.
json_response_instructions (str) – Instructions to be followed while generating the json_response if response_format is set to “JSON”. This can include the schema information if the schema is dynamic and its keys cannot be pre-determined.
json_response_schema (str) – Specifies the JSON schema that the model should adhere to if response_format is set to “JSON”. This should be a json-formatted string where each field of the expected schema is mapped to a dictionary containing the fields ‘type’, ‘required’ and ‘description’. For example - ‘{“sample_field”: {“type”: “integer”, “required”: true, “description”: “Sample Field”}}’
- __post_init__()
- class abacusai.api_class.SentenceBoundaryDetectionTrainingConfig
Bases:
TrainingConfig
Training config for the SENTENCE_BOUNDARY_DETECTION problem type
- Parameters:
- batch_size: abacusai.api_class.enums.BatchSize = None
- __post_init__()
- class abacusai.api_class.SentimentDetectionTrainingConfig
Bases:
TrainingConfig
Training config for the SENTIMENT_DETECTION problem type
- Parameters:
sentiment_type (SentimentType) – Type of sentiment to detect.
test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.
- sentiment_type: abacusai.api_class.enums.SentimentType = None
- __post_init__()
- class abacusai.api_class.DocumentClassificationTrainingConfig
Bases:
TrainingConfig
Training config for the DOCUMENT_CLASSIFICATION problem type
- Parameters:
- __post_init__()
- class abacusai.api_class.DocumentSummarizationTrainingConfig
Bases:
TrainingConfig
Training config for the DOCUMENT_SUMMARIZATION problem type
- Parameters:
- batch_size: abacusai.api_class.enums.BatchSize = None
- __post_init__()
- class abacusai.api_class.DocumentVisualizationTrainingConfig
Bases:
TrainingConfig
Training config for the DOCUMENT_VISUALIZATION problem type
- Parameters:
- batch_size: abacusai.api_class.enums.BatchSize = None
- __post_init__()
- class abacusai.api_class.ClusteringTrainingConfig
Bases:
TrainingConfig
Training config for the CLUSTERING problem type
- Parameters:
num_clusters_selection (int) – Number of clusters. If None, will be selected automatically.
- __post_init__()
- class abacusai.api_class.ClusteringTimeseriesTrainingConfig
Bases:
TrainingConfig
Training config for the CLUSTERING_TIMESERIES problem type
- Parameters:
num_clusters_selection (int) – Number of clusters. If None, will be selected automatically.
imputation (ClusteringImputationMethod) – Imputation method for missing values.
- imputation: abacusai.api_class.enums.ClusteringImputationMethod = None
- __post_init__()
- class abacusai.api_class.EventAnomalyTrainingConfig
Bases:
TrainingConfig
Training config for the EVENT_ANOMALY problem type
- Parameters:
anomaly_fraction (float) – The fraction of the dataset to classify as anomalous, between 0 and 0.5
- __post_init__()
- class abacusai.api_class.TimeseriesAnomalyTrainingConfig
Bases:
TrainingConfig
Training config for the TS_ANOMALY problem type
- Parameters:
type_of_split (TimeseriesAnomalyDataSplitType) – Type of data splitting into train/test.
test_start (str) – Limit training data to dates before the given test start.
test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.
fill_missing_values (List[List[dict]]) – strategies to fill missing values and missing timestamps
handle_zeros_as_missing_values (bool) – If True, handle zero values in numeric columns as missing data
timeseries_frequency (str) – set this to control frequency of filling missing values
min_samples_in_normal_region (int) – Adjust this to fine-tune the number of anomalies to be identified.
anomaly_type (TimeseriesAnomalyTypeOfAnomaly) – select what kind of peaks to detect as anomalies
hyperparameter_calculation_with_heuristics (TimeseriesAnomalyUseHeuristic) – Enable heuristic calculation to get hyperparameters for the model
threshold_score (float) – Threshold score for anomaly detection
additional_anomaly_ids (List[str]) – List of categorical columns that can act as multi-identifier
- type_of_split: abacusai.api_class.enums.TimeseriesAnomalyDataSplitType = None
- anomaly_type: abacusai.api_class.enums.TimeseriesAnomalyTypeOfAnomaly = None
- hyperparameter_calculation_with_heuristics: abacusai.api_class.enums.TimeseriesAnomalyUseHeuristic = None
- __post_init__()
- class abacusai.api_class.CumulativeForecastingTrainingConfig
Bases:
TrainingConfig
Training config for the CUMULATIVE_FORECASTING problem type
- Parameters:
test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.
historical_frequency (str) – Forecast frequency
cumulative_prediction_lengths (List[int]) – List of Cumulative Prediction Frequencies. Each prediction length must be between 1 and 365.
skip_input_transform (bool) – Avoid doing numeric scaling transformations on the input.
skip_target_transform (bool) – Avoid doing numeric scaling transformations on the target.
predict_residuals (bool) – Predict residuals instead of totals at each prediction step.
- __post_init__()
- class abacusai.api_class.ThemeAnalysisTrainingConfig
Bases:
TrainingConfig
Training config for the THEME ANALYSIS problem type
- __post_init__()
- class abacusai.api_class.AIAgentTrainingConfig
Bases:
TrainingConfig
Training config for the AI_AGENT problem type
- Parameters:
description (str) – Description of the agent function.
agent_interface (AgentInterface) – The interface that the agent will be deployed with.
agent_connectors – (List[enums.ApplicationConnectorType]): The connectors needed for the agent to function.
- agent_interface: abacusai.api_class.enums.AgentInterface = None
- agent_connectors: List[abacusai.api_class.enums.ApplicationConnectorType] = None
- __post_init__()
- class abacusai.api_class.CustomTrainedModelTrainingConfig
Bases:
TrainingConfig
Training config for the CUSTOM_TRAINED_MODEL problem type
- Parameters:
max_catalog_size (int) – Maximum expected catalog size.
max_dimension (int) – Maximum expected dimension of the catalog.
index_output_path (str) – Fully qualified cloud location (GCS, S3, etc) to export snapshots of the embedding to.
docker_image_uri (str) – Docker image URI.
service_port (int) – Service port.
streaming_embeddings (bool) – Flag to enable streaming embeddings.
- __post_init__()
- class abacusai.api_class.CustomAlgorithmTrainingConfig
Bases:
TrainingConfig
Training config for the CUSTOM_ALGORITHM problem type
- Parameters:
timeout_minutes (int) – Timeout for the model training in minutes.
- __post_init__()
- class abacusai.api_class.OptimizationTrainingConfig
Bases:
TrainingConfig
Training config for the OPTIMIZATION problem type
- Parameters:
solve_time_limit (float) – The maximum time in seconds to spend solving the problem. Accepts values between 0 and 86400.
optimality_gap_limit (float) – The stopping optimality gap limit. Optimality gap is fractional difference between the best known solution and the best possible solution. Accepts values between 0 and 1.
include_all_partitions (bool) – Include all partitions in the model training. Default is False.
include_specific_partitions (List[str]) – Include specific partitions in partitioned model training. Default is empty list.
- __post_init__()
- class abacusai.api_class._TrainingConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class
- config_class_key = 'problem_type'
- config_class_map
- class abacusai.api_class.DeployableAlgorithm
Bases:
abacusai.api_class.abstract.ApiClass
Algorithm that can be deployed to a model.
- Parameters:
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.StdDevThresholdType
Bases:
ApiEnum
Generic enumeration.
Derive from this class to define new enumerations.
- ABSOLUTE = 'ABSOLUTE'
- PERCENTILE = 'PERCENTILE'
- STDDEV = 'STDDEV'
- class abacusai.api_class.TimeWindowConfig
Bases:
abacusai.api_class.abstract.ApiClass
Time Window Configuration
- Parameters:
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.ForecastingMonitorConfig
Bases:
abacusai.api_class.abstract.ApiClass
Forecasting Monitor Configuration
- Parameters:
id_column (str) – The name of the column that contains the unique identifier for the time series.
timestamp_column (str) – The name of the column that contains the timestamp for the time series.
target_column (str) – The name of the column that contains the target value for the time series.
start_time (str) – The start time of the time series data.
end_time (str) – The end time of the time series data.
window_config (TimeWindowConfig) – The windowing configuration for the time series data.
- window_config: TimeWindowConfig = None
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.StdDevThreshold
Bases:
abacusai.api_class.abstract.ApiClass
Std Dev Threshold types
- Parameters:
threshold_type (StdDevThresholdType) – Type of threshold to apply to the item attributes.
value (float) – Value to use for the threshold.
- threshold_type: abacusai.api_class.enums.StdDevThresholdType = None
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.ItemAttributesStdDevThreshold
Bases:
abacusai.api_class.abstract.ApiClass
Item Attributes Std Dev Threshold for Monitor Alerts
- Parameters:
lower_bound (StdDevThreshold) – Lower bound for the item attributes.
upper_bound (StdDevThreshold) – Upper bound for the item attributes.
- lower_bound: StdDevThreshold = None
- upper_bound: StdDevThreshold = None
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.RestrictFeatureMappings
Bases:
abacusai.api_class.abstract.ApiClass
Restrict Feature Mappings for Monitor Filtering
- Parameters:
feature_name (str) – The name of the feature to restrict the monitor to.
restricted_feature_values (list) – The values of the feature to restrict the monitor to if feature is a categorical.
start_time (str) – The start time of the timestamp feature to filter from
end_time (str) – The end time of the timestamp feature to filter until
min_value (float) – Value to filter the numerical feature above
max_value (float) – Filtering the numerical feature to below this value
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.MonitorFilteringConfig
Bases:
abacusai.api_class.abstract.ApiClass
Monitor Filtering Configuration
- Parameters:
start_time (str) – The start time of the prediction time col
end_time (str) – The end time of the prediction time col
restrict_feature_mappings (RestrictFeatureMappings) – The feature mapping to restrict the monitor to.
target_class (str) – The target class to restrict the monitor to.
train_target_feature (str) – Set the target feature for the training data.
prediction_target_feature (str) – Set the target feature for the prediction data.
- restrict_feature_mappings: List[RestrictFeatureMappings] = None
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class._ApiClassFactory
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class = None
- config_class_key = None
- config_class_map
- class abacusai.api_class.AlertConditionConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for alert condition configs
- alert_type: abacusai.api_class.enums.MonitorAlertType = None
- classmethod _get_builder()
- class abacusai.api_class.AccuracyBelowThresholdConditionConfig
Bases:
AlertConditionConfig
Accuracy Below Threshold Condition Config for Monitor Alerts
- Parameters:
threshold (float) – Threshold for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.
- __post_init__()
- class abacusai.api_class.FeatureDriftConditionConfig
Bases:
AlertConditionConfig
Feature Drift Condition Config for Monitor Alerts
- Parameters:
feature_drift_type (FeatureDriftType) – Feature drift type to apply the threshold on to determine whether a column has drifted significantly enough to be a violation.
threshold (float) – Threshold for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.
minimum_violations (int) – Number of columns that must exceed the specified threshold to trigger an alert.
feature_names (List[str]) – List of feature names to monitor for this alert.
- feature_drift_type: abacusai.api_class.enums.FeatureDriftType = None
- __post_init__()
- class abacusai.api_class.TargetDriftConditionConfig
Bases:
AlertConditionConfig
Target Drift Condition Config for Monitor Alerts
- Parameters:
feature_drift_type (FeatureDriftType) – Target drift type to apply the threshold on to determine whether a column has drifted significantly enough to be a violation.
threshold (float) – Threshold for when to consider the target column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.
- feature_drift_type: abacusai.api_class.enums.FeatureDriftType = None
- __post_init__()
- class abacusai.api_class.HistoryLengthDriftConditionConfig
Bases:
AlertConditionConfig
History Length Drift Condition Config for Monitor Alerts
- Parameters:
feature_drift_type (FeatureDriftType) – History length drift type to apply the threshold on to determine whether the history length has drifted significantly enough to be a violation.
threshold (float) – Threshold for when to consider the history length to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.
- feature_drift_type: abacusai.api_class.enums.FeatureDriftType = None
- __post_init__()
- class abacusai.api_class.DataIntegrityViolationConditionConfig
Bases:
AlertConditionConfig
Data Integrity Violation Condition Config for Monitor Alerts
- Parameters:
data_integrity_type (DataIntegrityViolationType) – This option selects the data integrity violations to monitor for this alert.
minimum_violations (int) – Number of columns that must exceed the specified threshold to trigger an alert.
- data_integrity_type: abacusai.api_class.enums.DataIntegrityViolationType = None
- __post_init__()
- class abacusai.api_class.BiasViolationConditionConfig
Bases:
AlertConditionConfig
Bias Violation Condition Config for Monitor Alerts
- Parameters:
bias_type (BiasType) – This option selects the bias metric to monitor for this alert.
threshold (float) – Threshold for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.
minimum_violations (int) – Number of columns that must exceed the specified threshold to trigger an alert.
- bias_type: abacusai.api_class.enums.BiasType = None
- __post_init__()
- class abacusai.api_class.PredictionCountConditionConfig
Bases:
AlertConditionConfig
Deployment Prediction Condition Config for Deployment Alerts. By default we monitor if predictions made over a time window has reduced significantly. :param threshold: Threshold for when to consider to be a violation. Negative means alert on reduction, positive means alert on increase. :type threshold: float :param aggregation_window: Time window to aggregate the predictions over, e.g. 1h, 10m. Only h(hour), m(minute) and s(second) are supported. :type aggregation_window: str :param aggregation_type: Aggregation type to use for the aggregation window, e.g. sum, avg. :type aggregation_type: str
- __post_init__()
- class abacusai.api_class._AlertConditionConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class
- config_class_key = 'alert_type'
- config_class_key_value_camel_case = True
- config_class_map
- class abacusai.api_class.AlertActionConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for alert action configs
- action_type: abacusai.api_class.enums.AlertActionType = None
- classmethod _get_builder()
- class abacusai.api_class.EmailActionConfig
Bases:
AlertActionConfig
Email Action Config for Monitor Alerts
- Parameters:
- __post_init__()
- class abacusai.api_class._AlertActionConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class
- config_class_key = 'action_type'
- config_class_map
- class abacusai.api_class.MonitorThresholdConfig
Bases:
abacusai.api_class.abstract.ApiClass
Monitor Threshold Config for Monitor Alerts
- Parameters:
drift_type (FeatureDriftType) – Feature drift type to apply the threshold on to determine whether a column has drifted significantly enough to be a violation.
threshold_config (ThresholdConfigs) – Thresholds for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.
- drift_type: abacusai.api_class.enums.FeatureDriftType = None
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class._ApiClassFactory
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class = None
- config_class_key = None
- config_class_map
- class abacusai.api_class.FeatureMappingConfig
Bases:
abacusai.api_class.abstract.ApiClass
Feature mapping configuration for a feature group type.
- Parameters:
- class abacusai.api_class.ProjectFeatureGroupTypeMappingsConfig
Bases:
abacusai.api_class.abstract.ApiClass
Project feature group type mappings.
- Parameters:
feature_group_id (str) – The unique identifier for the feature group.
feature_group_type (str) – The feature group type.
feature_mappings (List[FeatureMappingConfig]) – The feature mappings for the feature group.
- feature_mappings: List[FeatureMappingConfig]
- class abacusai.api_class.ConstraintConfig
Bases:
abacusai.api_class.abstract.ApiClass
Constraint configuration.
- Parameters:
constant (float) – The constant value for the constraint.
operator (str) – The operator for the constraint. Could be ‘EQ’, ‘LE’, ‘GE’
enforcement (str) – The enforcement for the constraint. Could be ‘HARD’ or ‘SOFT’ or ‘SKIP’. Default is ‘HARD’
code (str) – The code for the constraint.
penalty (float) – The penalty for violating the constraint.
- class abacusai.api_class.ProjectFeatureGroupConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for project feature group configuration.
- type: abacusai.api_class.enums.ProjectConfigType = None
- classmethod _get_builder()
- class abacusai.api_class.ConstraintProjectFeatureGroupConfig
Bases:
ProjectFeatureGroupConfig
Constraint project feature group configuration.
- Parameters:
constraints (List[ConstraintConfig]) – The constraint for the feature group. Should be a list of one ConstraintConfig.
- constraints: List[ConstraintConfig]
- __post_init__()
- class abacusai.api_class.ReviewModeProjectFeatureGroupConfig
Bases:
ProjectFeatureGroupConfig
Review mode project feature group configuration.
- Parameters:
is_review_mode (bool) – The review mode for the feature group.
- __post_init__()
- class abacusai.api_class._ProjectFeatureGroupConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class
- config_class_key = 'type'
- config_class_map
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.PythonFunctionArgument
Bases:
abacusai.api_class.abstract.ApiClass
A config class for python function arguments
- Parameters:
variable_type (PythonFunctionArgumentType) – The type of the python function argument
name (str) – The name of the python function variable
is_required (bool) – Whether the argument is required
value (Any) – The value of the argument
pipeline_variable (str) – The name of the pipeline variable to use as the value
- variable_type: abacusai.api_class.enums.PythonFunctionArgumentType = None
- value: Any = None
- class abacusai.api_class.OutputVariableMapping
Bases:
abacusai.api_class.abstract.ApiClass
A config class for python function arguments
- Parameters:
variable_type (PythonFunctionOutputArgumentType) – The type of the python function output argument
name (str) – The name of the python function variable
- variable_type: abacusai.api_class.enums.PythonFunctionOutputArgumentType = None
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class._ApiClassFactory
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class = None
- config_class_key = None
- config_class_map
- class abacusai.api_class.FeatureGroupExportConfig
Bases:
abacusai.api_class.abstract.ApiClass
An abstract class for feature group exports.
- connector_type: abacusai.api_class.enums.ConnectorType = None
- classmethod _get_builder()
- class abacusai.api_class.FileConnectorExportConfig
Bases:
FeatureGroupExportConfig
File connector export config for feature groups
- Parameters:
- __post_init__()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.DatabaseConnectorExportConfig
Bases:
FeatureGroupExportConfig
Database connector export config for feature groups
- Parameters:
database_connector_id (str) – The ID of the database connector to export the feature group to
mode (str) – The mode to export the feature group in
object_name (str) – The name of the object to export the feature group to
id_column (str) – The name of the ID column
additional_id_columns (List[str]) – Additional ID columns
data_columns (Dict[str, str]) – The data columns to export the feature group to
- __post_init__()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class._FeatureGroupExportConfigFactory
Bases:
abacusai.api_class.abstract._ApiClassFactory
Helper class that provides a standard way to create an ABC using inheritance.
- config_abstract_class
- config_class_key = 'connector_type'
- config_class_map
- class abacusai.api_class.ApiClass
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- __post_init__()
- classmethod _get_builder()
- __str__()
- _repr_html_()
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.ResponseSection
Bases:
abacusai.api_class.abstract.ApiClass
A response section that an agent can return to render specific UI elements.
- Parameters:
type (ResponseSectionType) – The type of the response.
id (str) – The section key of the segment.
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- abacusai.api_class.Segment
- class abacusai.api_class.AgentFlowButtonResponseSection(label, agent_workflow_node_name, section_key=None)
Bases:
ResponseSection
A response section that an AI Agent can return to render a button.
- Parameters:
- class abacusai.api_class.ImageUrlResponseSection(url, height, width, section_key=None)
Bases:
ResponseSection
A response section that an agent can return to render an image.
- Parameters:
- class abacusai.api_class.TextResponseSection(text, section_key=None)
Bases:
ResponseSection
A response section that an agent can return to render text.
- class abacusai.api_class.RuntimeSchemaResponseSection(json_schema, ui_schema=None, schema_prop=None)
Bases:
ResponseSection
A segment that an agent can return to render json and ui schema in react-jsonschema-form format for workflow nodes. This is primarily used to generate dynamic forms at runtime. If a node returns a runtime schema variable, the UI will render the form upon node execution.
- Parameters:
- class abacusai.api_class.CodeResponseSection(code, language, section_key=None)
Bases:
ResponseSection
A response section that an agent can return to render code.
- Parameters:
code (str) – The code to be displayed.
language (CodeLanguage) – The language of the code.
section_key (str)
- language: abacusai.api_class.enums.CodeLanguage
- class abacusai.api_class.Base64ImageResponseSection(b64_image, section_key=None)
Bases:
ResponseSection
A response section that an agent can return to render a base64 image.
- class abacusai.api_class.CollapseResponseSection(title, content, section_key=None)
Bases:
ResponseSection
A response section that an agent can return to render a collapsible component.
- Parameters:
title (str) – The title of the collapsible component.
content (ResponseSection) – The response section constituting the content of collapsible component
section_key (str)
- content: ResponseSection
- to_dict()
Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.
- class abacusai.api_class.ListResponseSection(items, section_key=None)
Bases:
ResponseSection
A response section that an agent can return to render a list.
- class abacusai.api_class.ChartResponseSection(chart, section_key=None)
Bases:
ResponseSection
A response section that an agent can return to render a chart.
- class abacusai.api_class.DataframeResponseSection(df, header=None, section_key=None)
Bases:
ResponseSection
A response section that an agent can return to render a pandas dataframe. :param df: The dataframe to be displayed. :type df: pandas.DataFrame :param header: Heading of the table to be displayed. :type header: str
- df: Any