abacusai.api_class

Submodules

Attributes

DocumentRetrieverConfig

Segment

Classes

ApiClass

Helper class that provides a standard way to create an ABC using

FieldDescriptor

Configs for vector store indexing.

JSONSchema

WorkflowNodeInputMapping

Represents a mapping of inputs to a workflow node.

WorkflowNodeInputSchema

A schema conformant to react-jsonschema-form for workflow node input.

WorkflowNodeOutputMapping

Represents a mapping of output from a workflow node.

WorkflowNodeOutputSchema

A schema conformant to react-jsonschema-form for a workflow node output.

TriggerConfig

Represents the configuration for a trigger workflow node.

WorkflowGraphNode

Represents a node in an Agent workflow graph.

WorkflowGraphEdge

Represents an edge in an Agent workflow graph.

WorkflowGraph

Represents an Agent workflow graph.

AgentConversationMessage

Message format for agent conversation

WorkflowNodeTemplateConfig

Represents a WorkflowNode template config.

WorkflowNodeTemplateInput

Represents an input to the workflow node generated using template.

WorkflowNodeTemplateOutput

Represents an output returned by the workflow node generated using template.

ApiClass

Helper class that provides a standard way to create an ABC using

HotkeyPrompt

A config class for a Data Science Co-Pilot Hotkey

ApiClass

Helper class that provides a standard way to create an ABC using

_ApiClassFactory

Helper class that provides a standard way to create an ABC using

BatchPredictionArgs

An abstract class for Batch Prediction args specific to problem type.

ForecastingBatchPredictionArgs

Batch Prediction Config for the FORECASTING problem type

NamedEntityExtractionBatchPredictionArgs

Batch Prediction Config for the NAMED_ENTITY_EXTRACTION problem type

PersonalizationBatchPredictionArgs

Batch Prediction Config for the PERSONALIZATION problem type

PredictiveModelingBatchPredictionArgs

Batch Prediction Config for the PREDICTIVE_MODELING problem type

PretrainedModelsBatchPredictionArgs

Batch Prediction Config for the PRETRAINED_MODELS problem type

SentenceBoundaryDetectionBatchPredictionArgs

Batch Prediction Config for the SENTENCE_BOUNDARY_DETECTION problem type

ThemeAnalysisBatchPredictionArgs

Batch Prediction Config for the THEME_ANALYSIS problem type

ChatLLMBatchPredictionArgs

Batch Prediction Config for the ChatLLM problem type

TrainablePlugAndPlayBatchPredictionArgs

Batch Prediction Config for the TrainablePlugAndPlay problem type

AIAgentBatchPredictionArgs

Batch Prediction Config for the AIAgents problem type

_BatchPredictionArgsFactory

Helper class that provides a standard way to create an ABC using

ApiClass

Helper class that provides a standard way to create an ABC using

Blob

An object for storing and passing file data.

BlobInput

An object for storing and passing file data.

_ApiClassFactory

Helper class that provides a standard way to create an ABC using

DatasetConfig

An abstract class for dataset configs

StreamingConnectorDatasetConfig

An abstract class for dataset configs specific to streaming connectors.

KafkaDatasetConfig

Dataset config for Kafka Streaming Connector

_StreamingConnectorDatasetConfigFactory

Helper class that provides a standard way to create an ABC using

ApiClass

Helper class that provides a standard way to create an ABC using

DocumentType

Generic enumeration.

OcrMode

Generic enumeration.

DatasetConfig

An abstract class for dataset configs

ParsingConfig

Custom config for dataset parsing.

DocumentProcessingConfig

Document processing configuration.

DatasetDocumentProcessingConfig

Document processing configuration for dataset imports.

IncrementalDatabaseConnectorConfig

Config information for incremental datasets from database connectors

AttachmentParsingConfig

Config information for parsing attachments

_ApiClassFactory

Helper class that provides a standard way to create an ABC using

DatasetConfig

An abstract class for dataset configs

DatasetDocumentProcessingConfig

Document processing configuration for dataset imports.

ApplicationConnectorDatasetConfig

An abstract class for dataset configs specific to application connectors.

ConfluenceDatasetConfig

Dataset config for Confluence Application Connector

BoxDatasetConfig

Dataset config for Box Application Connector

GoogleAnalyticsDatasetConfig

Dataset config for Google Analytics Application Connector

GoogleDriveDatasetConfig

Dataset config for Google Drive Application Connector

JiraDatasetConfig

Dataset config for Jira Application Connector

OneDriveDatasetConfig

Dataset config for OneDrive Application Connector

SharepointDatasetConfig

Dataset config for Sharepoint Application Connector

ZendeskDatasetConfig

Dataset config for Zendesk Application Connector

AbacusUsageMetricsDatasetConfig

Dataset config for Abacus Usage Metrics Application Connector

TeamsScraperDatasetConfig

Dataset config for Teams Scraper Application Connector

FreshserviceDatasetConfig

Dataset config for Freshservice Application Connector

_ApplicationConnectorDatasetConfigFactory

Helper class that provides a standard way to create an ABC using

ApiClass

Helper class that provides a standard way to create an ABC using

_ApiClassFactory

Helper class that provides a standard way to create an ABC using

PredictionArguments

An abstract class for prediction arguments specific to problem type.

OptimizationPredictionArguments

Prediction arguments for the OPTIMIZATION problem type

TimeseriesAnomalyPredictionArguments

Prediction arguments for the TS_ANOMALY problem type

ChatLLMPredictionArguments

Prediction arguments for the CHAT_LLM problem type

RegressionPredictionArguments

Prediction arguments for the PREDICTIVE_MODELING problem type

ForecastingPredictionArguments

Prediction arguments for the FORECASTING problem type

CumulativeForecastingPredictionArguments

Prediction arguments for the CUMULATIVE_FORECASTING problem type

NaturalLanguageSearchPredictionArguments

Prediction arguments for the NATURAL_LANGUAGE_SEARCH problem type

FeatureStorePredictionArguments

Prediction arguments for the FEATURE_STORE problem type

_PredictionArgumentsFactory

Helper class that provides a standard way to create an ABC using

ApiClass

Helper class that provides a standard way to create an ABC using

VectorStoreTextEncoder

Generic enumeration.

VectorStoreConfig

Config for indexing options of a document retriever. Default values of optional arguments are heuristically selected by the Abacus.AI platform based on the underlying data.

ApiEnum

Generic enumeration.

ProblemType

Generic enumeration.

RegressionObjective

Generic enumeration.

RegressionTreeHPOMode

Generic enumeration.

PartialDependenceAnalysis

Generic enumeration.

RegressionAugmentationStrategy

Generic enumeration.

RegressionTargetTransform

Generic enumeration.

RegressionTypeOfSplit

Generic enumeration.

RegressionTimeSplitMethod

Generic enumeration.

RegressionLossFunction

Generic enumeration.

ExplainerType

Generic enumeration.

SamplingMethodType

Generic enumeration.

MergeMode

Generic enumeration.

OperatorType

Generic enumeration.

MarkdownOperatorInputType

Generic enumeration.

FillLogic

Generic enumeration.

BatchSize

Generic enumeration.

HolidayCalendars

Generic enumeration.

FileFormat

Generic enumeration.

ExperimentationMode

Generic enumeration.

PersonalizationTrainingMode

Generic enumeration.

PersonalizationObjective

Generic enumeration.

ForecastingObjective

Generic enumeration.

ForecastingFrequency

Generic enumeration.

ForecastingDataSplitType

Generic enumeration.

ForecastingLossFunction

Generic enumeration.

ForecastingLocalScaling

Generic enumeration.

ForecastingFillMethod

Generic enumeration.

ForecastingQuanitlesExtensionMethod

Generic enumeration.

TimeseriesAnomalyDataSplitType

Generic enumeration.

TimeseriesAnomalyTypeOfAnomaly

Generic enumeration.

TimeseriesAnomalyUseHeuristic

Generic enumeration.

NERObjective

Generic enumeration.

NERModelType

Generic enumeration.

NLPDocumentFormat

Generic enumeration.

SentimentType

Generic enumeration.

ClusteringImputationMethod

Generic enumeration.

ConnectorType

Generic enumeration.

ApplicationConnectorType

Generic enumeration.

StreamingConnectorType

Generic enumeration.

PythonFunctionArgumentType

Generic enumeration.

PythonFunctionOutputArgumentType

Generic enumeration.

VectorStoreTextEncoder

Generic enumeration.

LLMName

Generic enumeration.

MonitorAlertType

Generic enumeration.

FeatureDriftType

Generic enumeration.

DataIntegrityViolationType

Generic enumeration.

BiasType

Generic enumeration.

AlertActionType

Generic enumeration.

PythonFunctionType

Generic enumeration.

EvalArtifactType

Generic enumeration.

FieldDescriptorType

Generic enumeration.

WorkflowNodeInputType

Generic enumeration.

WorkflowNodeOutputType

Generic enumeration.

OcrMode

Generic enumeration.

DocumentType

Generic enumeration.

StdDevThresholdType

Generic enumeration.

DataType

Generic enumeration.

AgentInterface

Generic enumeration.

WorkflowNodeTemplateType

Generic enumeration.

ProjectConfigType

Generic enumeration.

CPUSize

Generic enumeration.

MemorySize

Generic enumeration.

ResponseSectionType

Generic enumeration.

CodeLanguage

Generic enumeration.

DeploymentConversationType

Generic enumeration.

ApiClass

Helper class that provides a standard way to create an ABC using

_ApiClassFactory

Helper class that provides a standard way to create an ABC using

DocumentProcessingConfig

Document processing configuration.

SamplingConfig

An abstract class for the sampling config of a feature group

NSamplingConfig

The number of distinct values of the key columns to include in the sample, or number of rows if key columns not specified.

PercentSamplingConfig

The fraction of distinct values of the feature group to include in the sample.

_SamplingConfigFactory

Helper class that provides a standard way to create an ABC using

MergeConfig

An abstract class for the merge config of a feature group

LastNMergeConfig

Merge LAST N chunks/versions of an incremental dataset.

TimeWindowMergeConfig

Merge rows within a given timewindow of the most recent timestamp

_MergeConfigFactory

Helper class that provides a standard way to create an ABC using

OperatorConfig

Configuration for a template Feature Group Operation

UnpivotConfig

Unpivot Columns in a FeatureGroup.

MarkdownConfig

Transform a input column to a markdown column.

CrawlerTransformConfig

Transform a input column of urls to html text

ExtractDocumentDataConfig

Extracts data from documents.

DataGenerationConfig

Generate synthetic data using a model for finetuning an LLM.

UnionTransformConfig

Takes Union of current feature group with 1 or more selected feature groups of same type.

_OperatorConfigFactory

A class to select and return the the correct type of Operator Config based on a serialized OperatorConfig instance.

ApiClass

Helper class that provides a standard way to create an ABC using

_ApiClassFactory

Helper class that provides a standard way to create an ABC using

TrainingConfig

An abstract class for the training config options used to train the model.

PersonalizationTrainingConfig

Training config for the PERSONALIZATION problem type

RegressionTrainingConfig

Training config for the PREDICTIVE_MODELING problem type

ForecastingTrainingConfig

Training config for the FORECASTING problem type

NamedEntityExtractionTrainingConfig

Training config for the NAMED_ENTITY_EXTRACTION problem type

NaturalLanguageSearchTrainingConfig

Training config for the NATURAL_LANGUAGE_SEARCH problem type

ChatLLMTrainingConfig

Training config for the CHAT_LLM problem type

SentenceBoundaryDetectionTrainingConfig

Training config for the SENTENCE_BOUNDARY_DETECTION problem type

SentimentDetectionTrainingConfig

Training config for the SENTIMENT_DETECTION problem type

DocumentClassificationTrainingConfig

Training config for the DOCUMENT_CLASSIFICATION problem type

DocumentSummarizationTrainingConfig

Training config for the DOCUMENT_SUMMARIZATION problem type

DocumentVisualizationTrainingConfig

Training config for the DOCUMENT_VISUALIZATION problem type

ClusteringTrainingConfig

Training config for the CLUSTERING problem type

ClusteringTimeseriesTrainingConfig

Training config for the CLUSTERING_TIMESERIES problem type

EventAnomalyTrainingConfig

Training config for the EVENT_ANOMALY problem type

TimeseriesAnomalyTrainingConfig

Training config for the TS_ANOMALY problem type

CumulativeForecastingTrainingConfig

Training config for the CUMULATIVE_FORECASTING problem type

ThemeAnalysisTrainingConfig

Training config for the THEME ANALYSIS problem type

AIAgentTrainingConfig

Training config for the AI_AGENT problem type

CustomTrainedModelTrainingConfig

Training config for the CUSTOM_TRAINED_MODEL problem type

CustomAlgorithmTrainingConfig

Training config for the CUSTOM_ALGORITHM problem type

OptimizationTrainingConfig

Training config for the OPTIMIZATION problem type

_TrainingConfigFactory

Helper class that provides a standard way to create an ABC using

DeployableAlgorithm

Algorithm that can be deployed to a model.

ApiClass

Helper class that provides a standard way to create an ABC using

StdDevThresholdType

Generic enumeration.

TimeWindowConfig

Time Window Configuration

ForecastingMonitorConfig

Forecasting Monitor Configuration

StdDevThreshold

Std Dev Threshold types

ItemAttributesStdDevThreshold

Item Attributes Std Dev Threshold for Monitor Alerts

RestrictFeatureMappings

Restrict Feature Mappings for Monitor Filtering

MonitorFilteringConfig

Monitor Filtering Configuration

ApiClass

Helper class that provides a standard way to create an ABC using

_ApiClassFactory

Helper class that provides a standard way to create an ABC using

AlertConditionConfig

An abstract class for alert condition configs

AccuracyBelowThresholdConditionConfig

Accuracy Below Threshold Condition Config for Monitor Alerts

FeatureDriftConditionConfig

Feature Drift Condition Config for Monitor Alerts

TargetDriftConditionConfig

Target Drift Condition Config for Monitor Alerts

HistoryLengthDriftConditionConfig

History Length Drift Condition Config for Monitor Alerts

DataIntegrityViolationConditionConfig

Data Integrity Violation Condition Config for Monitor Alerts

BiasViolationConditionConfig

Bias Violation Condition Config for Monitor Alerts

PredictionCountConditionConfig

Deployment Prediction Condition Config for Deployment Alerts. By default we monitor if predictions made over a time window has reduced significantly.

_AlertConditionConfigFactory

Helper class that provides a standard way to create an ABC using

AlertActionConfig

An abstract class for alert action configs

EmailActionConfig

Email Action Config for Monitor Alerts

_AlertActionConfigFactory

Helper class that provides a standard way to create an ABC using

MonitorThresholdConfig

Monitor Threshold Config for Monitor Alerts

ApiClass

Helper class that provides a standard way to create an ABC using

_ApiClassFactory

Helper class that provides a standard way to create an ABC using

FeatureMappingConfig

Feature mapping configuration for a feature group type.

ProjectFeatureGroupTypeMappingsConfig

Project feature group type mappings.

ConstraintConfig

Constraint configuration.

ProjectFeatureGroupConfig

An abstract class for project feature group configuration.

ConstraintProjectFeatureGroupConfig

Constraint project feature group configuration.

ReviewModeProjectFeatureGroupConfig

Review mode project feature group configuration.

_ProjectFeatureGroupConfigFactory

Helper class that provides a standard way to create an ABC using

ApiClass

Helper class that provides a standard way to create an ABC using

PythonFunctionArgument

A config class for python function arguments

OutputVariableMapping

A config class for python function arguments

ApiClass

Helper class that provides a standard way to create an ABC using

_ApiClassFactory

Helper class that provides a standard way to create an ABC using

FeatureGroupExportConfig

An abstract class for feature group exports.

FileConnectorExportConfig

File connector export config for feature groups

DatabaseConnectorExportConfig

Database connector export config for feature groups

_FeatureGroupExportConfigFactory

Helper class that provides a standard way to create an ABC using

ApiClass

Helper class that provides a standard way to create an ABC using

ResponseSection

A response section that an agent can return to render specific UI elements.

AgentFlowButtonResponseSection

A response section that an AI Agent can return to render a button.

ImageUrlResponseSection

A response section that an agent can return to render an image.

TextResponseSection

A response section that an agent can return to render text.

RuntimeSchemaResponseSection

A segment that an agent can return to render json and ui schema in react-jsonschema-form format for workflow nodes.

CodeResponseSection

A response section that an agent can return to render code.

Base64ImageResponseSection

A response section that an agent can return to render a base64 image.

CollapseResponseSection

A response section that an agent can return to render a collapsible component.

ListResponseSection

A response section that an agent can return to render a list.

ChartResponseSection

A response section that an agent can return to render a chart.

DataframeResponseSection

A response section that an agent can return to render a pandas dataframe.

Functions

get_clean_function_source_code_for_agent(func)

validate_constructor_arg_types([friendly_class_name])

validate_input_dict_param(dict_object, friendly_class_name)

deprecated_enums(*enum_values)

Package Contents

class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

abacusai.api_class.get_clean_function_source_code_for_agent(func)
Parameters:

func (Callable)

abacusai.api_class.validate_constructor_arg_types(friendly_class_name=None)
abacusai.api_class.validate_input_dict_param(dict_object, friendly_class_name, must_contain=[])
class abacusai.api_class.FieldDescriptor

Bases: abacusai.api_class.abstract.ApiClass

Configs for vector store indexing.

Parameters:
  • field (str) – The field to be extracted. This will be used as the key in the response.

  • description (str) – The description of this field. If not included, the response_field will be used.

  • example_extraction (Union[str, int, bool, float]) – An example of this extracted field.

  • type (FieldDescriptorType) – The type of this field. If not provided, the default type is STRING.

field: str
description: str = None
example_extraction: str | int | bool | float | list | dict = None
type: abacusai.api_class.enums.FieldDescriptorType
class abacusai.api_class.JSONSchema
classmethod from_fields_list(fields_list)
Parameters:

fields_list (List[str])

classmethod to_fields_list(json_schema)
Return type:

List[str]

class abacusai.api_class.WorkflowNodeInputMapping

Bases: abacusai.api_class.abstract.ApiClass

Represents a mapping of inputs to a workflow node.

Parameters:
  • name (str) – The name of the input variable of the node function.

  • variable_type (Union[WorkflowNodeInputType, str]) – The type of the input. If the type is IGNORE, the input will be ignored.

  • variable_source (str) – The name of the node this variable is sourced from. If the type is WORKFLOW_VARIABLE, the value given by the source node will be directly used. If the type is USER_INPUT, the value given by the source node will be used as the default initial value before the user edits it. Set to None if the type is USER_INPUT and the variable doesn’t need a pre-filled initial value.

  • is_required (bool) – Indicates whether the input is required. Defaults to True.

  • description (str) – The description of this input.

  • constant_value (str) – The constant value of this input if variable type is CONSTANT. Only applicable for template nodes.

name: str
variable_type: abacusai.api_class.enums.WorkflowNodeInputType
variable_source: str = None
source_prop: str = None
is_required: bool = True
description: str = None
constant_value: str = None
__post_init__()
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(mapping)
Parameters:

mapping (dict)

class abacusai.api_class.WorkflowNodeInputSchema

Bases: abacusai.api_class.abstract.ApiClass, JSONSchema

A schema conformant to react-jsonschema-form for workflow node input.

To initialize a WorkflowNodeInputSchema dependent on another node’s output, use the from_workflow_node method.

Parameters:
  • json_schema (dict) – The JSON schema for the input, conformant to react-jsonschema-form specification. Must define keys like “title”, “type”, and “properties”. Supported elements include Checkbox, Radio Button, Dropdown, Textarea, Number, Date, and file upload. Nested elements, arrays, and other complex types are not supported.

  • ui_schema (dict) – The UI schema for the input, conformant to react-jsonschema-form specification.

json_schema: dict
ui_schema: dict
schema_source: str = None
schema_prop: str = None
runtime_schema: bool = False
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(schema)
Parameters:

schema (dict)

classmethod from_workflow_node(schema_source, schema_prop)

Creates a WorkflowNodeInputSchema instance which references the schema generated by a WorkflowGraphNode.

Parameters:
  • schema_source (str) – The name of the source WorkflowGraphNode.

  • schema_prop (str) – The name of the input schema parameter which source node outputs.

classmethod from_input_mappings(input_mappings)

Creates a json_schema for the input schema of the node from it’s input mappings.

Parameters:

input_mappings (List[WorkflowNodeInputMapping]) – The input mappings for the node.

class abacusai.api_class.WorkflowNodeOutputMapping

Bases: abacusai.api_class.abstract.ApiClass

Represents a mapping of output from a workflow node.

Parameters:
  • name (str) – The name of the output.

  • variable_type (Union[WorkflowNodeOutputType, str]) – The type of the output in the form of an enum or a string.

  • description (str) – The description of this output.

name: str
variable_type: abacusai.api_class.enums.WorkflowNodeOutputType | str
description: str = None
__post_init__()
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(mapping)
Parameters:

mapping (dict)

class abacusai.api_class.WorkflowNodeOutputSchema

Bases: abacusai.api_class.abstract.ApiClass, JSONSchema

A schema conformant to react-jsonschema-form for a workflow node output.

Parameters:

json_schema (dict) – The JSON schema for the output, conformant to react-jsonschema-form specification.

json_schema: dict
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(schema)
Parameters:

schema (dict)

class abacusai.api_class.TriggerConfig

Bases: abacusai.api_class.abstract.ApiClass

Represents the configuration for a trigger workflow node.

Parameters:

sleep_time (int) – The time in seconds to wait before the node gets executed again.

sleep_time: int = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(configs)
Parameters:

configs (dict)

class abacusai.api_class.WorkflowGraphNode(name, function=None, input_mappings=None, output_mappings=None, function_name=None, source_code=None, input_schema=None, output_schema=None, template_metadata=None, trigger_config=None)

Bases: abacusai.api_class.abstract.ApiClass

Represents a node in an Agent workflow graph.

Parameters:
  • name (str) – A unique name for the workflow node.

  • input_mappings (List[WorkflowNodeInputMapping]) – List of input mappings for the node. Each arg/kwarg of the node function should have a corresponding input mapping.

  • output_mappings (List[WorkflowNodeOutputMapping]) – List of output mappings for the node. Each field in the returned dict/AgentResponse must have a corresponding output mapping.

  • function (callable) – The callable node function reference.

  • input_schema (WorkflowNodeInputSchema) – The react json schema for the user input variables.

  • output_schema (WorkflowNodeOutputSchema) – The react json schema for the output to be shown on UI.

  • function_name (str)

  • source_code (str)

  • template_metadata (dict)

  • trigger_config (TriggerConfig)

Additional Attributes:

function_name (str): The name of the function. source_code (str): The source code of the function. trigger_config (TriggerConfig): The configuration for a trigger workflow node.

template_metadata = None
trigger_config = None
classmethod _raw_init(name, input_mappings=None, output_mappings=None, function=None, function_name=None, source_code=None, input_schema=None, output_schema=None, template_metadata=None, trigger_config=None)
Parameters:
classmethod from_template(template_name, name, configs=None, input_mappings=None, input_schema=None, output_schema=None, sleep_time=None)
Parameters:
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(node)
Parameters:

node (dict)

__setattr__(name, value)
__getattribute__(name)
class Outputs(node)
Parameters:

node (WorkflowGraphNode)

node
__getattr__(name)
property outputs
class abacusai.api_class.WorkflowGraphEdge(source, target, details=None)

Bases: abacusai.api_class.abstract.ApiClass

Represents an edge in an Agent workflow graph.

To make an edge conditional, provide {‘EXECUTION_CONDITION’: ‘<condition>’} key-value in the details dictionary. The condition should be a Pythonic expression string that evaluates to a boolean value and only depends on the outputs of the source node of the edge.

Parameters:
  • source (str) – The name of the source node of the edge.

  • target (str) – The name of the target node of the edge.

  • details (dict) – Additional details about the edge. Like the condition for edge execution.

source: str | WorkflowGraphNode
target: str | WorkflowGraphNode
details: dict
to_nx_edge()
class abacusai.api_class.WorkflowGraph

Bases: abacusai.api_class.abstract.ApiClass

Represents an Agent workflow graph.

The edges define the node invocation order.

Parameters:
  • nodes (List[WorkflowGraphNode]) – A list of nodes in the workflow graph.

  • edges (List[WorkflowGraphEdge]) – A list of edges in the workflow graph, where each edge is a tuple of source, target, and details.

  • primary_start_node (Union[str, WorkflowGraphNode]) – The primary node to start the workflow from.

nodes: List[WorkflowGraphNode] = []
edges: List[WorkflowGraphEdge | Tuple[WorkflowGraphNode, WorkflowGraphNode, dict] | Tuple[str, str, dict]] = []
primary_start_node: str | WorkflowGraphNode = None
common_source_code: str = None
__post_init__()
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(graph)
Parameters:

graph (dict)

class abacusai.api_class.AgentConversationMessage

Bases: abacusai.api_class.abstract.ApiClass

Message format for agent conversation

Parameters:
  • is_user (bool) – Whether the message is from the user.

  • text (str) – The message’s text.

  • document_contents (dict) – Dict of document name to document text in case of any document present.

is_user: bool = None
text: str = None
document_contents: dict = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.WorkflowNodeTemplateConfig

Bases: abacusai.api_class.abstract.ApiClass

Represents a WorkflowNode template config.

Parameters:
  • name (str) – A unique name of the config.

  • description (str) – The description of this config.

  • default_value (str) – Default value of the config to be used if value is not provided during node initialization.

  • is_required (bool) – Indicates whether the config is required. Defaults to False.

name: str
description: str = None
default_value: str = None
is_required: bool = False
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(mapping)
Parameters:

mapping (dict)

class abacusai.api_class.WorkflowNodeTemplateInput

Bases: abacusai.api_class.abstract.ApiClass

Represents an input to the workflow node generated using template.

Parameters:
  • name (str) – A unique name of the input.

  • is_required (bool) – Indicates whether the input is required. Defaults to False.

  • description (str) – The description of this input.

name: str
is_required: bool = False
description: str = ''
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(mapping)
Parameters:

mapping (dict)

class abacusai.api_class.WorkflowNodeTemplateOutput

Bases: abacusai.api_class.abstract.ApiClass

Represents an output returned by the workflow node generated using template.

Parameters:
  • name (str) – The name of the output.

  • variable_type (WorkflowNodeOutputType) – The type of the output.

  • description (str) – The description of this output.

name: str
variable_type: abacusai.api_class.enums.WorkflowNodeOutputType
description: str = ''
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(mapping)
Parameters:

mapping (dict)

class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class.HotkeyPrompt

Bases: abacusai.api_class.abstract.ApiClass

A config class for a Data Science Co-Pilot Hotkey

Parameters:
  • prompt (str) – The prompt to send to Data Science Co-Pilot

  • title (str) – A short, descriptive title for the prompt. If not provided, one will be automatically generated.

prompt: str
title: str = None
disable_problem_type_context: bool = True
ignore_history: bool = None
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class._ApiClassFactory

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class = None
config_class_key = None
config_class_map
classmethod from_dict(config)
Parameters:

config (dict)

Return type:

ApiClass

class abacusai.api_class.BatchPredictionArgs

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for Batch Prediction args specific to problem type.

_support_kwargs: bool = True
kwargs: dict
problem_type: abacusai.api_class.enums.ProblemType = None
classmethod _get_builder()
class abacusai.api_class.ForecastingBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the FORECASTING problem type

Parameters:
  • for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation

  • predictions_start_date (str) – The start date for predictions. Accepts timestamp integers and strings in many standard formats such as YYYY-MM-DD, YYYY-MM-DD HH:MM:SS, or YYYY-MM-DDTHH:MM:SS. If not specified, the prediction start date will be automatically defined.

  • use_prediction_offset (bool) – If True, use prediction offset.

  • start_date_offset (int) – Sets prediction start date as this offset relative to the prediction start date.

  • forecasting_horizon (int) – The number of timestamps to predict in the future. Range: [1, 1000].

  • item_attributes_to_include_in_the_result (list) – List of columns to include in the prediction output.

  • explain_predictions (bool) – If True, calculates explanations for the forecasted values along with predictions.

  • create_monitor (bool) – Controls whether to automatically create a monitor to calculate the drift each time the batch prediction is run. Defaults to true if not specified.

for_eval: bool = None
predictions_start_date: str = None
use_prediction_offset: bool = None
start_date_offset: int = None
forecasting_horizon: int = None
item_attributes_to_include_in_the_result: list = None
explain_predictions: bool = None
create_monitor: bool = None
__post_init__()
class abacusai.api_class.NamedEntityExtractionBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the NAMED_ENTITY_EXTRACTION problem type

Parameters:

for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.

for_eval: bool = None
__post_init__()
class abacusai.api_class.PersonalizationBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the PERSONALIZATION problem type

Parameters:
  • for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.

  • number_of_items (int) – Number of items to recommend.

  • item_attributes_to_include_in_the_result (list) – List of columns to include in the prediction output.

  • score_field (str) – If specified, relative item scores will be returned using a field with this name

for_eval: bool = None
number_of_items: int = None
item_attributes_to_include_in_the_result: list = None
score_field: str = None
__post_init__()
class abacusai.api_class.PredictiveModelingBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the PREDICTIVE_MODELING problem type

Parameters:
  • for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.

  • explainer_type (enums.ExplainerType) – The type of explainer to use to generate explanations on the batch prediction.

  • number_of_samples_to_use_for_explainer (int) – Number Of Samples To Use For Kernel Explainer.

  • include_multi_class_explanations (bool) – If True, Includes explanations for all classes in multi-class classification.

  • features_considered_constant_for_explanations (str) – Comma separate list of fields to treat as constant in SHAP explanations.

  • importance_of_records_in_nested_columns (str) – Returns importance of each index in the specified nested column instead of SHAP column explanations.

  • explanation_filter_lower_bound (float) – If set explanations will be limited to predictions above this value, Range: [0, 1].

  • explanation_filter_upper_bound (float) – If set explanations will be limited to predictions below this value, Range: [0, 1].

  • explanation_filter_label (str) – For classification problems specifies the label to which the explanation bounds are applied.

  • output_columns (list) – A list of column names to include in the prediction result.

  • explain_predictions (bool) – If True, calculates explanations for the predicted values along with predictions.

  • create_monitor (bool) – Controls whether to automatically create a monitor to calculate the drift each time the batch prediction is run. Defaults to true if not specified.

for_eval: bool = None
explainer_type: abacusai.api_class.enums.ExplainerType = None
number_of_samples_to_use_for_explainer: int = None
include_multi_class_explanations: bool = None
features_considered_constant_for_explanations: str = None
importance_of_records_in_nested_columns: str = None
explanation_filter_lower_bound: float = None
explanation_filter_upper_bound: float = None
explanation_filter_label: str = None
output_columns: list = None
explain_predictions: bool = None
create_monitor: bool = None
__post_init__()
class abacusai.api_class.PretrainedModelsBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the PRETRAINED_MODELS problem type

Parameters:
  • for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.

  • files_output_location_prefix (str) – The output location prefix for the files.

  • channel_id_to_label_map (str) – JSON string for the map from channel ids to their labels.

for_eval: bool = None
files_output_location_prefix: str = None
channel_id_to_label_map: str = None
__post_init__()
class abacusai.api_class.SentenceBoundaryDetectionBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the SENTENCE_BOUNDARY_DETECTION problem type

Parameters:
  • for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation

  • explode_output (bool) – Explode data so there is one sentence per row.

for_eval: bool = None
explode_output: bool = None
__post_init__()
class abacusai.api_class.ThemeAnalysisBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the THEME_ANALYSIS problem type

Parameters:
  • for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.

  • analysis_frequency (str) – The length of each analysis interval.

  • start_date (str) – The end point for predictions.

  • analysis_days (int) – How many days to analyze.

for_eval: bool = None
analysis_frequency: str = None
start_date: str = None
analysis_days: int = None
__post_init__()
class abacusai.api_class.ChatLLMBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the ChatLLM problem type

Parameters:

for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.

for_eval: bool = None
__post_init__()
class abacusai.api_class.TrainablePlugAndPlayBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the TrainablePlugAndPlay problem type

Parameters:
  • for_eval (bool) – If True, the test fold which was created during training and used for metrics calculation will be used as input data. These predictions are hence, used for model evaluation.

  • create_monitor (bool) – Controls whether to automatically create a monitor to calculate the drift each time the batch prediction is run. Defaults to true if not specified.

for_eval: bool = None
create_monitor: bool = None
__post_init__()
class abacusai.api_class.AIAgentBatchPredictionArgs

Bases: BatchPredictionArgs

Batch Prediction Config for the AIAgents problem type

__post_init__()
class abacusai.api_class._BatchPredictionArgsFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'problem_type'
config_class_map
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class.Blob(contents, mime_type=None, filename=None, size=None)

Bases: abacusai.api_class.abstract.ApiClass

An object for storing and passing file data. In AI Agents, if a function accepts file upload as an argument, the uploaded file is passed as a Blob object. If a function returns a Blob object, it will be rendered as a file download.

Parameters:
  • contents (bytes) – The binary contents of the blob.

  • mime_type (str) – The mime type of the blob.

  • filename (str) – The original filename of the blob.

  • size (int) – The size of the blob in bytes.

filename: str
contents: bytes
mime_type: str
size: int
classmethod from_local_file(file_path)
Parameters:

file_path (str)

Return type:

Blob

classmethod from_contents(contents, filename=None, mime_type=None)
Parameters:
Return type:

Blob

class abacusai.api_class.BlobInput(filename=None, contents=None, mime_type=None, size=None)

Bases: Blob

An object for storing and passing file data. In AI Agents, if a function accepts file upload as an argument, the uploaded file is passed as a BlobInput object.

Parameters:
  • filename (str) – The original filename of the blob.

  • contents (bytes) – The binary contents of the blob.

  • mime_type (str) – The mime type of the blob.

  • size (int) – The size of the blob in bytes.

class abacusai.api_class._ApiClassFactory

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class = None
config_class_key = None
config_class_map
classmethod from_dict(config)
Parameters:

config (dict)

Return type:

ApiClass

class abacusai.api_class.DatasetConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for dataset configs

Parameters:

is_documentset (bool) – Whether the dataset is a document set

is_documentset: bool = None
class abacusai.api_class.StreamingConnectorDatasetConfig

Bases: abacusai.api_class.dataset.DatasetConfig

An abstract class for dataset configs specific to streaming connectors.

Parameters:

streaming_connector_type (StreamingConnectorType) – The type of streaming connector

streaming_connector_type: abacusai.api_class.enums.StreamingConnectorType = None
classmethod _get_builder()
class abacusai.api_class.KafkaDatasetConfig

Bases: StreamingConnectorDatasetConfig

Dataset config for Kafka Streaming Connector

Parameters:

topic (str) – The kafka topic to consume

topic: str = None
__post_init__()
class abacusai.api_class._StreamingConnectorDatasetConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'streaming_connector_type'
config_class_map
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class.DocumentType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

SIMPLE_TEXT = 'SIMPLE_TEXT'
TEXT = 'TEXT'
TABLES_AND_FORMS = 'TABLES_AND_FORMS'
EMBEDDED_IMAGES = 'EMBEDDED_IMAGES'
SCANNED_TEXT = 'SCANNED_TEXT'
classmethod is_ocr_forced(document_type)
Parameters:

document_type (DocumentType)

class abacusai.api_class.OcrMode

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AUTO = 'AUTO'
DEFAULT = 'DEFAULT'
LAYOUT = 'LAYOUT'
SCANNED = 'SCANNED'
COMPREHENSIVE = 'COMPREHENSIVE'
COMPREHENSIVE_V2 = 'COMPREHENSIVE_V2'
COMPREHENSIVE_TABLE_MD = 'COMPREHENSIVE_TABLE_MD'
COMPREHENSIVE_FORM_MD = 'COMPREHENSIVE_FORM_MD'
COMPREHENSIVE_FORM_AND_TABLE_MD = 'COMPREHENSIVE_FORM_AND_TABLE_MD'
TESSERACT_FAST = 'TESSERACT_FAST'
LLM = 'LLM'
AUGMENTED_LLM = 'AUGMENTED_LLM'
classmethod aws_ocr_modes()
class abacusai.api_class.DatasetConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for dataset configs

Parameters:

is_documentset (bool) – Whether the dataset is a document set

is_documentset: bool = None
class abacusai.api_class.ParsingConfig

Bases: abacusai.api_class.abstract.ApiClass

Custom config for dataset parsing.

Parameters:
  • escape (str) – Escape character for CSV files. Defaults to ‘”’.

  • csv_delimiter (str) – Delimiter for CSV files. Defaults to None.

  • file_path_with_schema (str) – Path to the file with schema. Defaults to None.

escape: str = '"'
csv_delimiter: str = None
file_path_with_schema: str = None
class abacusai.api_class.DocumentProcessingConfig

Bases: abacusai.api_class.abstract.ApiClass

Document processing configuration.

Parameters:
  • document_type (DocumentType) – Type of document. Can be one of Text, Tables and Forms, Embedded Images, etc. If not specified, type will be decided automatically.

  • highlight_relevant_text (bool) – Whether to extract bounding boxes and highlight relevant text in search results. Defaults to False.

  • extract_bounding_boxes (bool) – Whether to perform OCR and extract bounding boxes. If False, no OCR will be done but only the embedded text from digital documents will be extracted. Defaults to False.

  • ocr_mode (OcrMode) – OCR mode. There are different OCR modes available for different kinds of documents and use cases. This option only takes effect when extract_bounding_boxes is True.

  • use_full_ocr (bool) – Whether to perform full OCR. If True, OCR will be performed on the full page. If False, OCR will be performed on the non-text regions only. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.

  • remove_header_footer (bool) – Whether to remove headers and footers. Defaults to False. This option only takes effect when extract_bounding_boxes is True.

  • remove_watermarks (bool) – Whether to remove watermarks. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.

  • convert_to_markdown (bool) – Whether to convert extracted text to markdown. Defaults to False. This option only takes effect when extract_bounding_boxes is True.

  • mask_pii (bool) – Whether to mask personally identifiable information (PII) in the document text/tokens. Defaults to False.

document_type: abacusai.api_class.enums.DocumentType = None
highlight_relevant_text: bool = None
extract_bounding_boxes: bool = False
ocr_mode: abacusai.api_class.enums.OcrMode
use_full_ocr: bool = None
remove_watermarks: bool = True
convert_to_markdown: bool = False
mask_pii: bool = False
__post_init__()
_detect_ocr_mode()
classmethod _get_filtered_dict(config)

Filters out default values from the config

Parameters:

config (dict)

class abacusai.api_class.DatasetDocumentProcessingConfig

Bases: DocumentProcessingConfig

Document processing configuration for dataset imports.

Parameters:
  • extract_bounding_boxes (bool) – Whether to perform OCR and extract bounding boxes. If False, no OCR will be done but only the embedded text from digital documents will be extracted. Defaults to False.

  • ocr_mode (OcrMode) – OCR mode. There are different OCR modes available for different kinds of documents and use cases. This option only takes effect when extract_bounding_boxes is True.

  • use_full_ocr (bool) – Whether to perform full OCR. If True, OCR will be performed on the full page. If False, OCR will be performed on the non-text regions only. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.

  • remove_header_footer (bool) – Whether to remove headers and footers. Defaults to False. This option only takes effect when extract_bounding_boxes is True.

  • remove_watermarks (bool) – Whether to remove watermarks. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.

  • convert_to_markdown (bool) – Whether to convert extracted text to markdown. Defaults to False. This option only takes effect when extract_bounding_boxes is True.

  • page_text_column (str) – Name of the output column which contains the extracted text for each page. If not provided, no column will be created.

page_text_column: str = None
class abacusai.api_class.IncrementalDatabaseConnectorConfig

Bases: abacusai.api_class.abstract.ApiClass

Config information for incremental datasets from database connectors

Parameters:

timestamp_column (str) – If dataset is incremental, this is the column name of the required column in the dataset. This column must contain timestamps in descending order which are used to determine the increments of the incremental dataset.

timestamp_column: str = None
class abacusai.api_class.AttachmentParsingConfig

Bases: abacusai.api_class.abstract.ApiClass

Config information for parsing attachments

Parameters:
  • feature_group_name (str) – feature group name

  • column_name (str) – column name

  • urls (str) – list of urls

feature_group_name: str = None
column_name: str = None
urls: str = None
class abacusai.api_class._ApiClassFactory

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class = None
config_class_key = None
config_class_map
classmethod from_dict(config)
Parameters:

config (dict)

Return type:

ApiClass

class abacusai.api_class.DatasetConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for dataset configs

Parameters:

is_documentset (bool) – Whether the dataset is a document set

is_documentset: bool = None
class abacusai.api_class.DatasetDocumentProcessingConfig

Bases: DocumentProcessingConfig

Document processing configuration for dataset imports.

Parameters:
  • extract_bounding_boxes (bool) – Whether to perform OCR and extract bounding boxes. If False, no OCR will be done but only the embedded text from digital documents will be extracted. Defaults to False.

  • ocr_mode (OcrMode) – OCR mode. There are different OCR modes available for different kinds of documents and use cases. This option only takes effect when extract_bounding_boxes is True.

  • use_full_ocr (bool) – Whether to perform full OCR. If True, OCR will be performed on the full page. If False, OCR will be performed on the non-text regions only. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.

  • remove_header_footer (bool) – Whether to remove headers and footers. Defaults to False. This option only takes effect when extract_bounding_boxes is True.

  • remove_watermarks (bool) – Whether to remove watermarks. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.

  • convert_to_markdown (bool) – Whether to convert extracted text to markdown. Defaults to False. This option only takes effect when extract_bounding_boxes is True.

  • page_text_column (str) – Name of the output column which contains the extracted text for each page. If not provided, no column will be created.

page_text_column: str = None
class abacusai.api_class.ApplicationConnectorDatasetConfig

Bases: abacusai.api_class.dataset.DatasetConfig

An abstract class for dataset configs specific to application connectors.

Parameters:
  • application_connector_type (enums.ApplicationConnectorType) – The type of application connector

  • application_connector_id (str) – The ID of the application connector

  • document_processing_config (DatasetDocumentProcessingConfig) – The document processing configuration. Only valid if is_documentset is True for the dataset.

application_connector_type: abacusai.api_class.enums.ApplicationConnectorType = None
application_connector_id: str = None
document_processing_config: abacusai.api_class.dataset.DatasetDocumentProcessingConfig = None
classmethod _get_builder()
class abacusai.api_class.ConfluenceDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Confluence Application Connector :param location: The location of the pages to fetch :type location: str :param space_key: The space key of the space from which we fetch pages :type space_key: str :param pull_attachments: Whether to pull attachments for each page :type pull_attachments: bool :param extract_bounding_boxes: Whether to extract bounding boxes from the documents :type extract_bounding_boxes: bool

location: str = None
space_key: str = None
pull_attachments: bool = False
extract_bounding_boxes: bool = False
__post_init__()
class abacusai.api_class.BoxDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Box Application Connector :param location: The regex location of the files to fetch :type location: str

location: str = None
__post_init__()
class abacusai.api_class.GoogleAnalyticsDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Google Analytics Application Connector

Parameters:
  • location (str) – The view id of the report in the connector to fetch

  • start_timestamp (int) – Unix timestamp of the start of the period that will be queried

  • end_timestamp (int) – Unix timestamp of the end of the period that will be queried

location: str = None
start_timestamp: int = None
end_timestamp: int = None
__post_init__()
class abacusai.api_class.GoogleDriveDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Google Drive Application Connector

Parameters:
  • location (str) – The regex location of the files to fetch

  • csv_delimiter (str) – If the file format is CSV, use a specific csv delimiter

  • extract_bounding_boxes (bool) – Signifies whether to extract bounding boxes out of the documents. Only valid if is_documentset if True

  • merge_file_schemas (bool) – Signifies if the merge file schema policy is enabled. Not applicable if is_documentset is True

location: str = None
csv_delimiter: str = None
extract_bounding_boxes: bool = False
merge_file_schemas: bool = False
__post_init__()
class abacusai.api_class.JiraDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Jira Application Connector

Parameters:
  • jql (str) – The JQL query for fetching issues

  • custom_fields (list) – A list of custom fields to include in the dataset

  • include_comments (bool) – Fetch comments for each issue

  • include_watchers (bool) – Fetch watchers for each issue

jql: str = None
custom_fields: list = None
include_comments: bool = False
include_watchers: bool = False
__post_init__()
class abacusai.api_class.OneDriveDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for OneDrive Application Connector

Parameters:
  • location (str) – The regex location of the files to fetch

  • csv_delimiter (str) – If the file format is CSV, use a specific csv delimiter

  • extract_bounding_boxes (bool) – Signifies whether to extract bounding boxes out of the documents. Only valid if is_documentset if True

  • merge_file_schemas (bool) – Signifies if the merge file schema policy is enabled. Not applicable if is_documentset is True

location: str = None
csv_delimiter: str = None
extract_bounding_boxes: bool = False
merge_file_schemas: bool = False
__post_init__()
class abacusai.api_class.SharepointDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Sharepoint Application Connector

Parameters:
  • location (str) – The regex location of the files to fetch

  • csv_delimiter (str) – If the file format is CSV, use a specific csv delimiter

  • extract_bounding_boxes (bool) – Signifies whether to extract bounding boxes out of the documents. Only valid if is_documentset if True

  • merge_file_schemas (bool) – Signifies if the merge file schema policy is enabled. Not applicable if is_documentset is True

location: str = None
csv_delimiter: str = None
extract_bounding_boxes: bool = False
merge_file_schemas: bool = False
__post_init__()
class abacusai.api_class.ZendeskDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Zendesk Application Connector

Parameters:

location (str) – The regex location of the files to fetch

location: str = None
__post_init__()
class abacusai.api_class.AbacusUsageMetricsDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Abacus Usage Metrics Application Connector

Parameters:
  • include_entire_conversation_history (bool) – Whether to show the entire history for this deployment conversation

  • include_all_feedback (bool) – Whether to include all feedback for this deployment conversation

  • resolve_matching_documents (bool) – Whether to get matching document references for response instead of prompt. Needs to recalculate them if highlights are unavailable in summary_info

include_entire_conversation_history: bool = False
include_all_feedback: bool = False
resolve_matching_documents: bool = False
__post_init__()
class abacusai.api_class.TeamsScraperDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Teams Scraper Application Connector

Parameters:
  • pull_chat_messages (bool) – Whether to pull teams chat messages

  • pull_channel_posts (bool) – Whether to pull posts for each channel

  • pull_transcripts (bool) – Whether to pull transcripts for calendar meetings

pull_chat_messages: bool = False
pull_channel_posts: bool = False
pull_transcripts: bool = False
__post_init__()
class abacusai.api_class.FreshserviceDatasetConfig

Bases: ApplicationConnectorDatasetConfig

Dataset config for Freshservice Application Connector

__post_init__()
class abacusai.api_class._ApplicationConnectorDatasetConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'application_connector_type'
config_class_map
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class._ApiClassFactory

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class = None
config_class_key = None
config_class_map
classmethod from_dict(config)
Parameters:

config (dict)

Return type:

ApiClass

class abacusai.api_class.PredictionArguments

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for prediction arguments specific to problem type.

_support_kwargs: bool = True
kwargs: dict
problem_type: abacusai.api_class.enums.ProblemType = None
classmethod _get_builder()
class abacusai.api_class.OptimizationPredictionArguments

Bases: PredictionArguments

Prediction arguments for the OPTIMIZATION problem type

Parameters:
  • forced_assignments (dict) – Set of assignments to force and resolve before returning query results.

  • solve_time_limit_seconds (float) – Maximum time in seconds to spend solving the query.

  • include_all_assignments (bool) – If True, will return all assignments, including assignments with value 0. Default is False.

forced_assignments: dict = None
solve_time_limit_seconds: float = None
include_all_assignments: bool = None
__post_init__()
class abacusai.api_class.TimeseriesAnomalyPredictionArguments

Bases: PredictionArguments

Prediction arguments for the TS_ANOMALY problem type

Parameters:
  • start_timestamp (str) – Timestamp from which anomalies have to be detected in the training data

  • end_timestamp (str) – Timestamp to which anomalies have to be detected in the training data

  • get_all_item_data (bool) – If True, anomaly detection has to be performed on all the data related to input ids

start_timestamp: str = None
end_timestamp: str = None
get_all_item_data: bool = None
__post_init__()
class abacusai.api_class.ChatLLMPredictionArguments

Bases: PredictionArguments

Prediction arguments for the CHAT_LLM problem type

Parameters:
  • llm_name (str) – Name of the specific LLM backend to use to power the chat experience.

  • num_completion_tokens (int) – Default for maximum number of tokens for chat answers.

  • system_message (str) – The generative LLM system message.

  • temperature (float) – The generative LLM temperature.

  • search_score_cutoff (float) – Cutoff for the document retriever score. Matching search results below this score will be ignored.

  • ignore_documents (bool) – If True, will ignore any documents and search results, and only use the messages to generate a response.

llm_name: str = None
num_completion_tokens: int = None
system_message: str = None
temperature: float = None
search_score_cutoff: float = None
ignore_documents: bool = None
__post_init__()
class abacusai.api_class.RegressionPredictionArguments

Bases: PredictionArguments

Prediction arguments for the PREDICTIVE_MODELING problem type

Parameters:
  • explain_predictions (bool) – If true, will explain predictions.

  • explainer_type (str) – Type of explainer to use for explanations.

explain_predictions: bool = None
explainer_type: str = None
__post_init__()
class abacusai.api_class.ForecastingPredictionArguments

Bases: PredictionArguments

Prediction arguments for the FORECASTING problem type

Parameters:
  • num_predictions (int) – The number of timestamps to predict in the future.

  • prediction_start (str) – The start date for predictions (e.g., “2015-08-01T00:00:00” as input for mid-night of 2015-08-01).

  • explain_predictions (bool) – If True, explain predictions for forecasting.

  • explainer_type (str) – Type of explainer to use for explanations.

  • get_item_data (bool) – If True, will return the data corresponding to items as well.

num_predictions: int = None
prediction_start: str = None
explain_predictions: bool = None
explainer_type: str = None
get_item_data: bool = None
__post_init__()
class abacusai.api_class.CumulativeForecastingPredictionArguments

Bases: PredictionArguments

Prediction arguments for the CUMULATIVE_FORECASTING problem type

Parameters:
  • num_predictions (int) – The number of timestamps to predict in the future.

  • prediction_start (str) – The start date for predictions (e.g., “2015-08-01T00:00:00” as input for mid-night of 2015-08-01).

  • explain_predictions (bool) – If True, explain predictions for forecasting.

  • explainer_type (str) – Type of explainer to use for explanations.

  • get_item_data (bool) – If True, will return the data corresponding to items as well.

num_predictions: int = None
prediction_start: str = None
explain_predictions: bool = None
explainer_type: str = None
get_item_data: bool = None
__post_init__()
class abacusai.api_class.NaturalLanguageSearchPredictionArguments

Bases: PredictionArguments

Prediction arguments for the NATURAL_LANGUAGE_SEARCH problem type

Parameters:
  • llm_name (str) – Name of the specific LLM backend to use to power the chat experience.

  • num_completion_tokens (int) – Default for maximum number of tokens for chat answers.

  • system_message (str) – The generative LLM system message.

  • temperature (float) – The generative LLM temperature.

  • search_score_cutoff (float) – Cutoff for the document retriever score. Matching search results below this score will be ignored.

  • ignore_documents (bool) – If True, will ignore any documents and search results, and only use the messages to generate a response.

llm_name: str = None
num_completion_tokens: int = None
system_message: str = None
temperature: float = None
search_score_cutoff: float = None
ignore_documents: bool = None
__post_init__()
class abacusai.api_class.FeatureStorePredictionArguments

Bases: PredictionArguments

Prediction arguments for the FEATURE_STORE problem type

Parameters:

limit_results (int) – If provided, will limit the number of results to the value specified.

limit_results: int = None
__post_init__()
class abacusai.api_class._PredictionArgumentsFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'problem_type'
config_class_map
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class.VectorStoreTextEncoder

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

E5 = 'E5'
OPENAI = 'OPENAI'
OPENAI_COMPACT = 'OPENAI_COMPACT'
OPENAI_LARGE = 'OPENAI_LARGE'
SENTENCE_BERT = 'SENTENCE_BERT'
E5_SMALL = 'E5_SMALL'
CODE_BERT = 'CODE_BERT'
class abacusai.api_class.VectorStoreConfig

Bases: abacusai.api_class.abstract.ApiClass

Config for indexing options of a document retriever. Default values of optional arguments are heuristically selected by the Abacus.AI platform based on the underlying data.

Parameters:
  • chunk_size (int) – The size of text chunks in the vector store.

  • chunk_overlap_fraction (float) – The fraction of overlap between chunks.

  • text_encoder (VectorStoreTextEncoder) – Encoder used to index texts from the documents.

  • chunk_size_factors (list) – Chunking data with multiple sizes. The specified list of factors are used to calculate more sizes, in addition to chunk_size.

  • score_multiplier_column (str) – If provided, will use the values in this metadata column to modify the relevance score of returned chunks for all queries.

  • prune_vectors (bool) – Transform vectors using SVD so that the average component of vectors in the corpus are removed.

  • index_metadata_columns (bool) – If True, metadata columns of the FG will also be used for indexing and querying.

  • use_document_summary (bool) – If True, uses the summary of the document in addition to chunks of the document for indexing and querying.

  • summary_instructions (str) – Instructions for the LLM to generate the document summary.

chunk_size: int = None
chunk_overlap_fraction: float = None
text_encoder: abacusai.api_class.enums.VectorStoreTextEncoder = None
chunk_size_factors: list = None
score_multiplier_column: str = None
prune_vectors: bool = None
index_metadata_columns: bool = None
use_document_summary: bool = None
summary_instructions: str = None
abacusai.api_class.DocumentRetrieverConfig
abacusai.api_class.deprecated_enums(*enum_values)
class abacusai.api_class.ApiEnum

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

__deprecated_values__ = []
is_deprecated()
__eq__(other)
__hash__()
class abacusai.api_class.ProblemType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AI_AGENT = 'ai_agent'
EVENT_ANOMALY = 'event_anomaly'
CLUSTERING = 'clustering'
CLUSTERING_TIMESERIES = 'clustering_timeseries'
CUMULATIVE_FORECASTING = 'cumulative_forecasting'
NAMED_ENTITY_EXTRACTION = 'nlp_ner'
CHAT_LLM = 'chat_llm'
SENTENCE_BOUNDARY_DETECTION = 'nlp_sentence_boundary_detection'
SENTIMENT_DETECTION = 'nlp_sentiment'
DOCUMENT_CLASSIFICATION = 'nlp_classification'
DOCUMENT_SUMMARIZATION = 'nlp_summarization'
DOCUMENT_VISUALIZATION = 'nlp_document_visualization'
PERSONALIZATION = 'personalization'
PREDICTIVE_MODELING = 'regression'
FINETUNED_LLM = 'finetuned_llm'
FORECASTING = 'forecasting'
CUSTOM_TRAINED_MODEL = 'plug_and_play'
CUSTOM_ALGORITHM = 'trainable_plug_and_play'
FEATURE_STORE = 'feature_store'
IMAGE_CLASSIFICATION = 'vision_classification'
OBJECT_DETECTION = 'vision_object_detection'
IMAGE_VALUE_PREDICTION = 'vision_regression'
MODEL_MONITORING = 'model_monitoring'
LANGUAGE_DETECTION = 'language_detection'
OPTIMIZATION = 'optimization'
PRETRAINED_MODELS = 'pretrained'
THEME_ANALYSIS = 'theme_analysis'
TS_ANOMALY = 'ts_anomaly'
class abacusai.api_class.RegressionObjective

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AUC = 'auc'
ACCURACY = 'acc'
LOG_LOSS = 'log_loss'
PRECISION = 'precision'
RECALL = 'recall'
F1_SCORE = 'fscore'
MAE = 'mae'
MAPE = 'mape'
WAPE = 'wape'
RMSE = 'rmse'
R_SQUARED_COEFFICIENT_OF_DETERMINATION = 'r^2'
class abacusai.api_class.RegressionTreeHPOMode

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

RAPID = 'rapid'
THOROUGH = 'thorough'
class abacusai.api_class.PartialDependenceAnalysis

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

RAPID = 'rapid'
THOROUGH = 'thorough'
class abacusai.api_class.RegressionAugmentationStrategy

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

SMOTE = 'smote'
RESAMPLE = 'resample'
class abacusai.api_class.RegressionTargetTransform

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

LOG = 'log'
QUANTILE = 'quantile'
YEO_JOHNSON = 'yeo-johnson'
BOX_COX = 'box-cox'
class abacusai.api_class.RegressionTypeOfSplit

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

RANDOM = 'Random Sampling'
TIMESTAMP_BASED = 'Timestamp Based'
ROW_INDICATOR_BASED = 'Row Indicator Based'
STRATIFIED_RANDOM_SAMPLING = 'Stratified Random Sampling'
class abacusai.api_class.RegressionTimeSplitMethod

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

TEST_SPLIT_PERCENTAGE_BASED = 'Test Split Percentage Based'
TEST_START_TIMESTAMP_BASED = 'Test Start Timestamp Based'
class abacusai.api_class.RegressionLossFunction

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

HUBER = 'Huber'
MSE = 'Mean Squared Error'
MAE = 'Mean Absolute Error'
MAPE = 'Mean Absolute Percentage Error'
MSLE = 'Mean Squared Logarithmic Error'
TWEEDIE = 'Tweedie'
CROSS_ENTROPY = 'Cross Entropy'
FOCAL_CROSS_ENTROPY = 'Focal Cross Entropy'
AUTOMATIC = 'Automatic'
CUSTOM = 'Custom'
class abacusai.api_class.ExplainerType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

KERNEL_EXPLAINER = 'KERNEL_EXPLAINER'
LIME_EXPLAINER = 'LIME_EXPLAINER'
TREE_EXPLAINER = 'TREE_EXPLAINER'
EBM_EXPLAINER = 'EBM_EXPLAINER'
class abacusai.api_class.SamplingMethodType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

N_SAMPLING = 'N_SAMPLING'
PERCENT_SAMPLING = 'PERCENT_SAMPLING'
class abacusai.api_class.MergeMode

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

LAST_N = 'LAST_N'
TIME_WINDOW = 'TIME_WINDOW'
class abacusai.api_class.OperatorType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

UNPIVOT = 'UNPIVOT'
MARKDOWN = 'MARKDOWN'
CRAWLER = 'CRAWLER'
EXTRACT_DOCUMENT_DATA = 'EXTRACT_DOCUMENT_DATA'
DATA_GENERATION = 'DATA_GENERATION'
UNION = 'UNION'
class abacusai.api_class.MarkdownOperatorInputType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

HTML = 'HTML'
class abacusai.api_class.FillLogic

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AVERAGE = 'average'
MAX = 'max'
MEDIAN = 'median'
MIN = 'min'
CUSTOM = 'custom'
BACKFILL = 'bfill'
FORWARDFILL = 'ffill'
LINEAR = 'linear'
NEAREST = 'nearest'
class abacusai.api_class.BatchSize

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

BATCH_8 = 8
BATCH_16 = 16
BATCH_32 = 32
BATCH_64 = 64
BATCH_128 = 128
BATCH_256 = 256
BATCH_384 = 384
BATCH_512 = 512
BATCH_740 = 740
BATCH_1024 = 1024
class abacusai.api_class.HolidayCalendars

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AU = 'AU'
UK = 'UK'
US = 'US'
class abacusai.api_class.FileFormat

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AVRO = 'AVRO'
PARQUET = 'PARQUET'
TFRECORD = 'TFRECORD'
TSV = 'TSV'
CSV = 'CSV'
ORC = 'ORC'
JSON = 'JSON'
ODS = 'ODS'
XLS = 'XLS'
GZ = 'GZ'
ZIP = 'ZIP'
TAR = 'TAR'
DOCX = 'DOCX'
PDF = 'PDF'
MD = 'md'
RAR = 'RAR'
GIF = 'GIF'
JPEG = 'JPG'
PNG = 'PNG'
TIF = 'TIFF'
NUMBERS = 'NUMBERS'
PPTX = 'PPTX'
PPT = 'PPT'
HTML = 'HTML'
TXT = 'txt'
EML = 'eml'
MP3 = 'MP3'
MP4 = 'MP4'
FLV = 'flv'
MOV = 'mov'
MPG = 'mpg'
MPEG = 'mpeg'
WEBP = 'webp'
WEBM = 'webm'
WMV = 'wmv'
MSG = 'msg'
class abacusai.api_class.ExperimentationMode

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

RAPID = 'rapid'
THOROUGH = 'thorough'
class abacusai.api_class.PersonalizationTrainingMode

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

EXPERIMENTAL = 'EXP'
PRODUCTION = 'PROD'
class abacusai.api_class.PersonalizationObjective

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

NDCG = 'ndcg'
NDCG_5 = 'ndcg@5'
NDCG_10 = 'ndcg@10'
MAP = 'map'
MAP_5 = 'map@5'
MAP_10 = 'map@10'
MRR = 'mrr'
PERSONALIZATION = 'personalization@10'
COVERAGE = 'coverage'
class abacusai.api_class.ForecastingObjective

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

ACCURACY = 'w_c_accuracy'
WAPE = 'wape'
MAPE = 'mape'
CMAPE = 'cmape'
RMSE = 'rmse'
CV = 'coefficient_of_variation'
BIAS = 'bias'
SRMSE = 'srmse'
class abacusai.api_class.ForecastingFrequency

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

HOURLY = '1H'
DAILY = '1D'
WEEKLY_SUNDAY_START = '1W'
WEEKLY_MONDAY_START = 'W-MON'
WEEKLY_SATURDAY_START = 'W-SAT'
MONTH_START = 'MS'
MONTH_END = '1M'
QUARTER_START = 'QS'
QUARTER_END = '1Q'
YEARLY = '1Y'
class abacusai.api_class.ForecastingDataSplitType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AUTO = 'Automatic Time Based'
TIMESTAMP = 'Timestamp Based'
ITEM = 'Item Based'
PREDICTION_LENGTH = 'Force Prediction Length'
L_SHAPED_AUTO = 'L-shaped Split - Automatic Time Based'
L_SHAPED_TIMESTAMP = 'L-shaped Split - Timestamp Based'
class abacusai.api_class.ForecastingLossFunction

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

CUSTOM = 'Custom'
MEAN_ABSOLUTE_ERROR = 'mae'
NORMALIZED_MEAN_ABSOLUTE_ERROR = 'nmae'
PEAKS_MEAN_ABSOLUTE_ERROR = 'peaks_mae'
MEAN_ABSOLUTE_PERCENTAGE_ERROR = 'stable_mape'
POINTWISE_ACCURACY = 'accuracy'
ROOT_MEAN_SQUARE_ERROR = 'rmse'
NORMALIZED_ROOT_MEAN_SQUARE_ERROR = 'nrmse'
ASYMMETRIC_MEAN_ABSOLUTE_PERCENTAGE_ERROR = 'asymmetric_mape'
STABLE_STANDARDIZED_MEAN_ABSOLUTE_PERCENTAGE_ERROR = 'stable_standardized_mape_with_cmape'
GAUSSIAN = 'mle_gaussian_local'
GAUSSIAN_FULL_COVARIANCE = 'mle_gaussfullcov'
GUASSIAN_EXPONENTIAL = 'mle_gaussexp'
MIX_GAUSSIANS = 'mle_gaussmix'
WEIBULL = 'mle_weibull'
NEGATIVE_BINOMIAL = 'mle_negbinom'
LOG_ROOT_MEAN_SQUARE_ERROR = 'log_rmse'
class abacusai.api_class.ForecastingLocalScaling

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

ZSCORE = 'zscore'
SLIDING_ZSCORE = 'sliding_zscore'
LAST_POINT = 'lastpoint'
MIN_MAX = 'minmax'
MIN_STD = 'minstd'
ROBUST = 'robust'
ITEM = 'item'
class abacusai.api_class.ForecastingFillMethod

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

BACK = 'BACK'
MIDDLE = 'MIDDLE'
FUTURE = 'FUTURE'
class abacusai.api_class.ForecastingQuanitlesExtensionMethod

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

DIRECT = 'direct'
QUADRATIC = 'quadratic'
ANCESTRAL_SIMULATION = 'simulation'
class abacusai.api_class.TimeseriesAnomalyDataSplitType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AUTO = 'Automatic Time Based'
TIMESTAMP = 'Fixed Timestamp Based'
class abacusai.api_class.TimeseriesAnomalyTypeOfAnomaly

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

HIGH_PEAK = 'high_peak'
LOW_PEAK = 'low_peak'
class abacusai.api_class.TimeseriesAnomalyUseHeuristic

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

ENABLE = 'enable'
DISABLE = 'disable'
AUTOMATIC = 'automatic'
class abacusai.api_class.NERObjective

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

LOG_LOSS = 'log_loss'
AUC = 'auc'
PRECISION = 'precision'
RECALL = 'recall'
ANNOTATIONS_PRECISION = 'annotations_precision'
ANNOTATIONS_RECALL = 'annotations_recall'
class abacusai.api_class.NERModelType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

PRETRAINED_BERT = 'pretrained_bert'
PRETRAINED_ROBERTA_27 = 'pretrained_roberta_27'
PRETRAINED_ROBERTA_43 = 'pretrained_roberta_43'
PRETRAINED_MULTILINGUAL = 'pretrained_multilingual'
LEARNED = 'learned'
class abacusai.api_class.NLPDocumentFormat

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AUTO = 'auto'
TEXT = 'text'
DOC = 'doc'
TOKENS = 'tokens'
class abacusai.api_class.SentimentType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

VALENCE = 'valence'
EMOTION = 'emotion'
class abacusai.api_class.ClusteringImputationMethod

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AUTOMATIC = 'Automatic'
ZEROS = 'Zeros'
INTERPOLATE = 'Interpolate'
class abacusai.api_class.ConnectorType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

FILE = 'FILE'
DATABASE = 'DATABASE'
STREAMING = 'STREAMING'
APPLICATION = 'APPLICATION'
class abacusai.api_class.ApplicationConnectorType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

GOOGLEANALYTICS = 'GOOGLEANALYTICS'
GOOGLEDRIVE = 'GOOGLEDRIVE'
GIT = 'GIT'
CONFLUENCE = 'CONFLUENCE'
JIRA = 'JIRA'
ONEDRIVE = 'ONEDRIVE'
ZENDESK = 'ZENDESK'
SLACK = 'SLACK'
SHAREPOINT = 'SHAREPOINT'
TEAMS = 'TEAMS'
ABACUSUSAGEMETRICS = 'ABACUSUSAGEMETRICS'
MICROSOFTAUTH = 'MICROSOFTAUTH'
FRESHSERVICE = 'FRESHSERVICE'
ZENDESKSUNSHINEMESSAGING = 'ZENDESKSUNSHINEMESSAGING'
GOOGLEDRIVEUSER = 'GOOGLEDRIVEUSER'
GOOGLEWORKSPACEUSER = 'GOOGLEWORKSPACEUSER'
GMAILUSER = 'GMAILUSER'
GOOGLECALENDAR = 'GOOGLECALENDAR'
GOOGLESHEETS = 'GOOGLESHEETS'
GOOGLEDOCS = 'GOOGLEDOCS'
TEAMSSCRAPER = 'TEAMSSCRAPER'
GITHUBUSER = 'GITHUBUSER'
OKTASAML = 'OKTASAML'
BOX = 'BOX'
class abacusai.api_class.StreamingConnectorType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

KAFKA = 'KAFKA'
class abacusai.api_class.PythonFunctionArgumentType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

FEATURE_GROUP = 'FEATURE_GROUP'
INTEGER = 'INTEGER'
STRING = 'STRING'
BOOLEAN = 'BOOLEAN'
FLOAT = 'FLOAT'
JSON = 'JSON'
LIST = 'LIST'
DATASET_ID = 'DATASET_ID'
MODEL_ID = 'MODEL_ID'
FEATURE_GROUP_ID = 'FEATURE_GROUP_ID'
MONITOR_ID = 'MONITOR_ID'
BATCH_PREDICTION_ID = 'BATCH_PREDICTION_ID'
DEPLOYMENT_ID = 'DEPLOYMENT_ID'
class abacusai.api_class.PythonFunctionOutputArgumentType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

NTEGER = 'INTEGER'
STRING = 'STRING'
BOOLEAN = 'BOOLEAN'
FLOAT = 'FLOAT'
JSON = 'JSON'
LIST = 'LIST'
DATASET_ID = 'DATASET_ID'
MODEL_ID = 'MODEL_ID'
FEATURE_GROUP_ID = 'FEATURE_GROUP_ID'
MONITOR_ID = 'MONITOR_ID'
BATCH_PREDICTION_ID = 'BATCH_PREDICTION_ID'
DEPLOYMENT_ID = 'DEPLOYMENT_ID'
ANY = 'ANY'
class abacusai.api_class.VectorStoreTextEncoder

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

E5 = 'E5'
OPENAI = 'OPENAI'
OPENAI_COMPACT = 'OPENAI_COMPACT'
OPENAI_LARGE = 'OPENAI_LARGE'
SENTENCE_BERT = 'SENTENCE_BERT'
E5_SMALL = 'E5_SMALL'
CODE_BERT = 'CODE_BERT'
class abacusai.api_class.LLMName

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

OPENAI_GPT4 = 'OPENAI_GPT4'
OPENAI_GPT4_32K = 'OPENAI_GPT4_32K'
OPENAI_GPT4_128K = 'OPENAI_GPT4_128K'
OPENAI_GPT4_128K_LATEST = 'OPENAI_GPT4_128K_LATEST'
OPENAI_GPT4O = 'OPENAI_GPT4O'
OPENAI_GPT4O_MINI = 'OPENAI_GPT4O_MINI'
OPENAI_GPT3_5 = 'OPENAI_GPT3_5'
OPENAI_GPT3_5_TEXT = 'OPENAI_GPT3_5_TEXT'
LLAMA3_1_405B = 'LLAMA3_1_405B'
LLAMA3_1_70B = 'LLAMA3_1_70B'
LLAMA3_1_8B = 'LLAMA3_1_8B'
LLAMA3_3_70B = 'LLAMA3_3_70B'
LLAMA3_LARGE_CHAT = 'LLAMA3_LARGE_CHAT'
CLAUDE_V3_OPUS = 'CLAUDE_V3_OPUS'
CLAUDE_V3_SONNET = 'CLAUDE_V3_SONNET'
CLAUDE_V3_HAIKU = 'CLAUDE_V3_HAIKU'
CLAUDE_V3_5_SONNET = 'CLAUDE_V3_5_SONNET'
CLAUDE_V3_5_HAIKU = 'CLAUDE_V3_5_HAIKU'
GEMINI_1_5_PRO = 'GEMINI_1_5_PRO'
GEMINI_2_FLASH = 'GEMINI_2_FLASH'
GEMINI_2_FLASH_THINKING = 'GEMINI_2_FLASH_THINKING'
ABACUS_SMAUG3 = 'ABACUS_SMAUG3'
ABACUS_DRACARYS = 'ABACUS_DRACARYS'
QWEN_2_5_32B = 'QWEN_2_5_32B'
QWEN_2_5_32B_BASE = 'QWEN_2_5_32B_BASE'
QWEN_2_5_72B = 'QWEN_2_5_72B'
QWQ_32B = 'QWQ_32B'
GEMINI_1_5_FLASH = 'GEMINI_1_5_FLASH'
XAI_GROK = 'XAI_GROK'
DEEPSEEK_V3 = 'DEEPSEEK_V3'
class abacusai.api_class.MonitorAlertType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

ACCURACY_BELOW_THRESHOLD = 'AccuracyBelowThreshold'
FEATURE_DRIFT = 'FeatureDrift'
DATA_INTEGRITY_VIOLATIONS = 'DataIntegrityViolations'
BIAS_VIOLATIONS = 'BiasViolations'
HISTORY_LENGTH_DRIFT = 'HistoryLengthDrift'
TARGET_DRIFT = 'TargetDrift'
PREDICTION_COUNT = 'PredictionCount'
class abacusai.api_class.FeatureDriftType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

KL = 'kl'
KS = 'ks'
WS = 'ws'
JS = 'js'
PSI = 'psi'
CHI_SQUARE = 'chi_square'
CSI = 'csi'
class abacusai.api_class.DataIntegrityViolationType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

NULL_VIOLATIONS = 'null_violations'
RANGE_VIOLATIONS = 'range_violations'
CATEGORICAL_RANGE_VIOLATION = 'categorical_range_violations'
TOTAL_VIOLATIONS = 'total_violations'
class abacusai.api_class.BiasType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

DEMOGRAPHIC_PARITY = 'demographic_parity'
EQUAL_OPPORTUNITY = 'equal_opportunity'
GROUP_BENEFIT_EQUALITY = 'group_benefit'
TOTAL = 'total'
class abacusai.api_class.AlertActionType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

EMAIL = 'Email'
class abacusai.api_class.PythonFunctionType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

FEATURE_GROUP = 'FEATURE_GROUP'
PLOTLY_FIG = 'PLOTLY_FIG'
STEP_FUNCTION = 'STEP_FUNCTION'
class abacusai.api_class.EvalArtifactType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

FORECASTING_ACCURACY = 'bar_chart'
FORECASTING_VOLUME = 'bar_chart_volume'
FORECASTING_HISTORY_LENGTH_ACCURACY = 'bar_chart_accuracy_by_history'
class abacusai.api_class.FieldDescriptorType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

STRING = 'STRING'
INTEGER = 'INTEGER'
FLOAT = 'FLOAT'
BOOLEAN = 'BOOLEAN'
DATETIME = 'DATETIME'
DATE = 'DATE'
class abacusai.api_class.WorkflowNodeInputType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

USER_INPUT = 'USER_INPUT'
WORKFLOW_VARIABLE = 'WORKFLOW_VARIABLE'
IGNORE = 'IGNORE'
CONSTANT = 'CONSTANT'
class abacusai.api_class.WorkflowNodeOutputType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

ATTACHMENT = 'ATTACHMENT'
BOOLEAN = 'BOOLEAN'
FLOAT = 'FLOAT'
INTEGER = 'INTEGER'
DICT = 'DICT'
LIST = 'LIST'
STRING = 'STRING'
RUNTIME_SCHEMA = 'RUNTIME_SCHEMA'
ANY = 'ANY'
classmethod normalize_type(python_type)
Parameters:

python_type (Union[str, type, None, WorkflowNodeOutputType])

Return type:

WorkflowNodeOutputType

class abacusai.api_class.OcrMode

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AUTO = 'AUTO'
DEFAULT = 'DEFAULT'
LAYOUT = 'LAYOUT'
SCANNED = 'SCANNED'
COMPREHENSIVE = 'COMPREHENSIVE'
COMPREHENSIVE_V2 = 'COMPREHENSIVE_V2'
COMPREHENSIVE_TABLE_MD = 'COMPREHENSIVE_TABLE_MD'
COMPREHENSIVE_FORM_MD = 'COMPREHENSIVE_FORM_MD'
COMPREHENSIVE_FORM_AND_TABLE_MD = 'COMPREHENSIVE_FORM_AND_TABLE_MD'
TESSERACT_FAST = 'TESSERACT_FAST'
LLM = 'LLM'
AUGMENTED_LLM = 'AUGMENTED_LLM'
classmethod aws_ocr_modes()
class abacusai.api_class.DocumentType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

SIMPLE_TEXT = 'SIMPLE_TEXT'
TEXT = 'TEXT'
TABLES_AND_FORMS = 'TABLES_AND_FORMS'
EMBEDDED_IMAGES = 'EMBEDDED_IMAGES'
SCANNED_TEXT = 'SCANNED_TEXT'
classmethod is_ocr_forced(document_type)
Parameters:

document_type (DocumentType)

class abacusai.api_class.StdDevThresholdType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

ABSOLUTE = 'ABSOLUTE'
PERCENTILE = 'PERCENTILE'
STDDEV = 'STDDEV'
class abacusai.api_class.DataType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

INTEGER = 'integer'
FLOAT = 'float'
STRING = 'string'
DATE = 'date'
DATETIME = 'datetime'
BOOLEAN = 'boolean'
LIST = 'list'
STRUCT = 'struct'
NULL = 'null'
BINARY = 'binary'
class abacusai.api_class.AgentInterface

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

DEFAULT = 'DEFAULT'
CHAT = 'CHAT'
MATRIX = 'MATRIX'
AUTONOMOUS = 'AUTONOMOUS'
class abacusai.api_class.WorkflowNodeTemplateType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

TRIGGER = 'trigger'
DEFAULT = 'default'
class abacusai.api_class.ProjectConfigType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

CONSTRAINTS = 'CONSTRAINTS'
CHAT_FEEDBACK = 'CHAT_FEEDBACK'
REVIEW_MODE = 'REVIEW_MODE'
class abacusai.api_class.CPUSize

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

SMALL = 'small'
MEDIUM = 'medium'
LARGE = 'large'
class abacusai.api_class.MemorySize

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

SMALL = 16
MEDIUM = 32
LARGE = 64
XLARGE = 128
classmethod from_value(value)
class abacusai.api_class.ResponseSectionType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

AGENT_FLOW_BUTTON = 'agent_flow_button'
ATTACHMENTS = 'attachments'
BASE64_IMAGE = 'base64_image'
CHART = 'chart'
CODE = 'code'
COLLAPSIBLE_COMPONENT = 'collapsible_component'
IMAGE_URL = 'image_url'
RUNTIME_SCHEMA = 'runtime_schema'
LIST = 'list'
TABLE = 'table'
TEXT = 'text'
class abacusai.api_class.CodeLanguage

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

PYTHON = 'python'
SQL = 'sql'
class abacusai.api_class.DeploymentConversationType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

CHAT_LLM = 'CHATLLM'
SIMPLE_AGENT = 'SIMPLE_AGENT'
COMPLEX_AGENT = 'COMPLEX_AGENT'
WORKFLOW_AGENT = 'WORKFLOW_AGENT'
COPILOT = 'COPILOT'
AGENT_CONTROLLER = 'AGENT_CONTROLLER'
CODE_LLM = 'CODE_LLM'
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class._ApiClassFactory

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class = None
config_class_key = None
config_class_map
classmethod from_dict(config)
Parameters:

config (dict)

Return type:

ApiClass

class abacusai.api_class.DocumentProcessingConfig

Bases: abacusai.api_class.abstract.ApiClass

Document processing configuration.

Parameters:
  • document_type (DocumentType) – Type of document. Can be one of Text, Tables and Forms, Embedded Images, etc. If not specified, type will be decided automatically.

  • highlight_relevant_text (bool) – Whether to extract bounding boxes and highlight relevant text in search results. Defaults to False.

  • extract_bounding_boxes (bool) – Whether to perform OCR and extract bounding boxes. If False, no OCR will be done but only the embedded text from digital documents will be extracted. Defaults to False.

  • ocr_mode (OcrMode) – OCR mode. There are different OCR modes available for different kinds of documents and use cases. This option only takes effect when extract_bounding_boxes is True.

  • use_full_ocr (bool) – Whether to perform full OCR. If True, OCR will be performed on the full page. If False, OCR will be performed on the non-text regions only. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.

  • remove_header_footer (bool) – Whether to remove headers and footers. Defaults to False. This option only takes effect when extract_bounding_boxes is True.

  • remove_watermarks (bool) – Whether to remove watermarks. By default, it will be decided automatically based on the OCR mode and the document type. This option only takes effect when extract_bounding_boxes is True.

  • convert_to_markdown (bool) – Whether to convert extracted text to markdown. Defaults to False. This option only takes effect when extract_bounding_boxes is True.

  • mask_pii (bool) – Whether to mask personally identifiable information (PII) in the document text/tokens. Defaults to False.

document_type: abacusai.api_class.enums.DocumentType = None
highlight_relevant_text: bool = None
extract_bounding_boxes: bool = False
ocr_mode: abacusai.api_class.enums.OcrMode
use_full_ocr: bool = None
remove_header_footer: bool = False
remove_watermarks: bool = True
convert_to_markdown: bool = False
mask_pii: bool = False
__post_init__()
_detect_ocr_mode()
classmethod _get_filtered_dict(config)

Filters out default values from the config

Parameters:

config (dict)

class abacusai.api_class.SamplingConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for the sampling config of a feature group

sampling_method: abacusai.api_class.enums.SamplingMethodType = None
classmethod _get_builder()
__post_init__()
class abacusai.api_class.NSamplingConfig

Bases: SamplingConfig

The number of distinct values of the key columns to include in the sample, or number of rows if key columns not specified.

Parameters:
  • sample_count (int) – The number of rows to include in the sample

  • key_columns (List[str]) – The feature(s) to use as the key(s) when sampling

sample_count: int
key_columns: List[str] = []
__post_init__()
class abacusai.api_class.PercentSamplingConfig

Bases: SamplingConfig

The fraction of distinct values of the feature group to include in the sample.

Parameters:
  • sample_percent (float) – The percentage of the rows to sample

  • key_columns (List[str]) – The feature(s) to use as the key(s) when sampling

sample_percent: float
key_columns: List[str] = []
__post_init__()
class abacusai.api_class._SamplingConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_class_key = 'sampling_method'
config_abstract_class
config_class_map
class abacusai.api_class.MergeConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for the merge config of a feature group

merge_mode: abacusai.api_class.enums.MergeMode = None
classmethod _get_builder()
__post_init__()
class abacusai.api_class.LastNMergeConfig

Bases: MergeConfig

Merge LAST N chunks/versions of an incremental dataset.

Parameters:
  • num_versions (int) – The number of versions to merge. num_versions == 0 means merge all versions.

  • include_version_timestamp_column (bool) – If set, include a column with the creation timestamp of source FG versions.

num_versions: int
include_version_timestamp_column: bool = None
__post_init__()
class abacusai.api_class.TimeWindowMergeConfig

Bases: MergeConfig

Merge rows within a given timewindow of the most recent timestamp

Parameters:
  • feature_name (str) – Time based column to index on

  • time_window_size_ms (int) – Range of merged rows will be [MAX_TIME - time_window_size_ms, MAX_TIME]

  • include_version_timestamp_column (bool) – If set, include a column with the creation timestamp of source FG versions.

feature_name: str
time_window_size_ms: int
include_version_timestamp_column: bool = None
__post_init__()
class abacusai.api_class._MergeConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_class_key = 'merge_mode'
config_abstract_class
config_class_map
class abacusai.api_class.OperatorConfig

Bases: abacusai.api_class.abstract.ApiClass

Configuration for a template Feature Group Operation

operator_type: abacusai.api_class.enums.OperatorType = None
classmethod _get_builder()
__post_init__()
class abacusai.api_class.UnpivotConfig

Bases: OperatorConfig

Unpivot Columns in a FeatureGroup.

Parameters:
  • columns (List[str]) – Which columns to unpivot.

  • index_column (str) – Name of new column containing the unpivoted column names as its values

  • value_column (str) – Name of new column containing the row values that were unpivoted.

  • exclude (bool) – If True, the unpivoted columns are all the columns EXCEPT the ones in the columns argument. Default is False.

columns: List[str] = None
index_column: str = None
value_column: str = None
exclude: bool = None
__post_init__()
class abacusai.api_class.MarkdownConfig

Bases: OperatorConfig

Transform a input column to a markdown column.

Parameters:
  • input_column (str) – Name of input column to transform.

  • output_column (str) – Name of output column to store transformed data.

  • input_column_type (MarkdownOperatorInputType) – Type of input column to transform.

input_column: str = None
output_column: str = None
input_column_type: abacusai.api_class.enums.MarkdownOperatorInputType = None
__post_init__()
class abacusai.api_class.CrawlerTransformConfig

Bases: OperatorConfig

Transform a input column of urls to html text

Parameters:
  • input_column (str) – Name of input column to transform.

  • output_column (str) – Name of output column to store transformed data.

  • depth_column (str) – Increasing depth explores more links, capturing more content

  • disable_host_restriction (bool) – If True, will not restrict crawling to the same host.

  • honour_website_rules (bool) – If True, will respect robots.txt rules.

  • user_agent (str) – If provided, will use this user agent instead of randomly selecting one.

input_column: str = None
output_column: str = None
depth_column: str = None
input_column_type: str = None
crawl_depth: int = None
disable_host_restriction: bool = None
honour_website_rules: bool = None
user_agent: str = None
__post_init__()
class abacusai.api_class.ExtractDocumentDataConfig

Bases: OperatorConfig

Extracts data from documents.

Parameters:
  • doc_id_column (str) – Name of input document ID column.

  • document_column (str) – Name of the input document column which contains the page infos. This column will be transformed to include the document processing config in the output feature group.

  • document_processing_config (DocumentProcessingConfig) – Document processing configuration.

doc_id_column: str = None
document_column: str = None
document_processing_config: abacusai.api_class.dataset.DocumentProcessingConfig = None
__post_init__()
class abacusai.api_class.DataGenerationConfig

Bases: OperatorConfig

Generate synthetic data using a model for finetuning an LLM.

Parameters:
  • prompt_col (str) – Name of the input prompt column.

  • completion_col (str) – Name of the output completion column.

  • description_col (str) – Name of the description column.

  • id_col (str) – Name of the identifier column.

  • generation_instructions (str) – Instructions for the data generation model.

  • temperature (float) – Sampling temperature for the model.

  • fewshot_examples (int) – Number of fewshot examples used to prompt the model.

  • concurrency (int) – Number of concurrent processes.

  • examples_per_target (int) – Number of examples per target.

  • subset_size (Optional[int]) – Size of the subset to use for generation.

  • verify_response (bool) – Whether to verify the response.

  • token_budget (int) – Token budget for generation.

  • oversample (bool) – Whether to oversample the data.

  • documentation_char_limit (int) – Character limit for documentation.

  • frequency_penalty (float) – Penalty for frequency of token appearance.

  • model (str) – Model to use for data generation.

  • seed (Optional[int]) – Seed for random number generation.

prompt_col: str = None
completion_col: str = None
description_col: str = None
id_col: str = None
generation_instructions: str = None
temperature: float = None
fewshot_examples: int = None
concurrency: int = None
examples_per_target: int = None
subset_size: int = None
verify_response: bool = None
token_budget: int = None
oversample: bool = None
documentation_char_limit: int = None
frequency_penalty: float = None
model: str = None
seed: int = None
__post_init__()
class abacusai.api_class.UnionTransformConfig

Bases: OperatorConfig

Takes Union of current feature group with 1 or more selected feature groups of same type.

Parameters:
  • feature_group_ids (List[str]) – List of feature group IDs to union with source FG.

  • drop_non_intersecting_columns (bool) – If true, will drop columns that are not present in all feature groups. If false fills missing columns with nulls.

feature_group_ids: List[str] = None
drop_non_intersecting_columns: bool = False
__post_init__()
class abacusai.api_class._OperatorConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

A class to select and return the the correct type of Operator Config based on a serialized OperatorConfig instance.

config_abstract_class
config_class_key = 'operator_type'
config_class_map
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class._ApiClassFactory

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class = None
config_class_key = None
config_class_map
classmethod from_dict(config)
Parameters:

config (dict)

Return type:

ApiClass

class abacusai.api_class.TrainingConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for the training config options used to train the model.

_upper_snake_case_keys: bool = True
_support_kwargs: bool = True
kwargs: dict
problem_type: abacusai.api_class.enums.ProblemType = None
algorithm: str = None
classmethod _get_builder()
class abacusai.api_class.PersonalizationTrainingConfig

Bases: TrainingConfig

Training config for the PERSONALIZATION problem type

Parameters:
  • objective (PersonalizationObjective) – Ranking scheme used to select final best model.

  • sort_objective (PersonalizationObjective) – Ranking scheme used to sort models on the metrics page.

  • training_mode (PersonalizationTrainingMode) – whether to train in production or experimental mode. Defaults to EXP.

  • target_action_types (List[str]) – List of action types to use as targets for training.

  • target_action_weights (Dict[str, float]) – Dictionary of action types to weights for training.

  • session_event_types (List[str]) – List of event types to treat as occurrences of sessions.

  • test_split (int) – Percent of dataset to use for test data. We support using a range between 6% to 20% of your dataset to use as test data.

  • recent_days_for_training (int) – Limit training data to a certain latest number of days.

  • training_start_date (str) – Only consider training interaction data after this date. Specified in the timezone of the dataset.

  • test_on_user_split (bool) – Use user splits instead of using time splits, when validating and testing the model.

  • test_split_on_last_k_items (bool) – Use last k items instead of global timestamp splits, when validating and testing the model.

  • test_last_items_length (int) – Number of items to leave out for each user when using leave k out folds.

  • test_window_length_hours (int) – Duration (in hours) of most recent time window to use when validating and testing the model.

  • explicit_time_split (bool) – Sets an explicit time-based test boundary.

  • test_row_indicator (str) – Column indicating which rows to use for training (TRAIN), validation (VAL) and testing (TEST).

  • full_data_retraining (bool) – Train models separately with all the data.

  • sequential_training (bool) – Train a mode sequentially through time.

  • data_split_feature_group_table_name (str) – Specify the table name of the feature group to export training data with the fold column.

  • optimized_event_type (str) – The final event type to optimize for and compute metrics on.

  • dropout_rate (int) – Dropout rate for neural network.

  • batch_size (BatchSize) – Batch size for neural network.

  • disable_transformer (bool) – Disable training the transformer algorithm.

  • disable_gpu (boo) – Disable training on GPU.

  • filter_history (bool) – Do not recommend items the user has already interacted with.

  • action_types_exclusion_days (Dict[str, float]) – Mapping from action type to number of days for which we exclude previously interacted items from prediction

  • session_dedupe_mins (float) – Minimum number of minutes between two sessions for a user.

  • max_history_length (int) – Maximum length of user-item history to include user in training examples.

  • compute_rerank_metrics (bool) – Compute metrics based on rerank results.

  • add_time_features (bool) – Include interaction time as a feature.

  • disable_timestamp_scalar_features (bool) – Exclude timestamp scalar features.

  • compute_session_metrics (bool) – Evaluate models based on how well they are able to predict the next session of interactions.

  • max_user_history_len_percentile (int) – Filter out users with history length above this percentile.

  • downsample_item_popularity_percentile (float) – Downsample items more popular than this percentile.

  • use_user_id_feature (bool) – Use user id as a feature in CTR models.

  • min_item_history (int) – Minimum number of interactions an item must have to be included in training.

  • query_column (str) – Name of column in the interactions table that represents a natural language query, e.g. ‘blue t-shirt’.

  • item_query_column (str) – Name of column in the item catalog that will be matched to the query column in the interactions table.

  • include_item_id_feature (bool) – Add Item-Id to the input features of the model. Applicable for Embedding distance and CTR models.

objective: abacusai.api_class.enums.PersonalizationObjective = None
sort_objective: abacusai.api_class.enums.PersonalizationObjective = None
training_mode: abacusai.api_class.enums.PersonalizationTrainingMode = None
target_action_types: List[str] = None
target_action_weights: Dict[str, float] = None
session_event_types: List[str] = None
test_split: int = None
recent_days_for_training: int = None
training_start_date: str = None
test_on_user_split: bool = None
test_split_on_last_k_items: bool = None
test_last_items_length: int = None
test_window_length_hours: int = None
explicit_time_split: bool = None
test_row_indicator: str = None
full_data_retraining: bool = None
sequential_training: bool = None
data_split_feature_group_table_name: str = None
optimized_event_type: str = None
dropout_rate: int = None
batch_size: abacusai.api_class.enums.BatchSize = None
disable_transformer: bool = None
disable_gpu: bool = None
filter_history: bool = None
action_types_exclusion_days: Dict[str, float] = None
max_history_length: int = None
compute_rerank_metrics: bool = None
add_time_features: bool = None
disable_timestamp_scalar_features: bool = None
compute_session_metrics: bool = None
query_column: str = None
item_query_column: str = None
use_user_id_feature: bool = None
session_dedupe_mins: float = None
include_item_id_feature: bool = None
max_user_history_len_percentile: int = None
downsample_item_popularity_percentile: float = None
min_item_history: int = None
__post_init__()
class abacusai.api_class.RegressionTrainingConfig

Bases: TrainingConfig

Training config for the PREDICTIVE_MODELING problem type

Parameters:
  • objective (RegressionObjective) – Ranking scheme used to select final best model.

  • sort_objective (RegressionObjective) – Ranking scheme used to sort models on the metrics page.

  • tree_hpo_mode – (RegressionTreeHPOMode): Turning off Rapid Experimentation will take longer to train.

  • type_of_split (RegressionTypeOfSplit) – Type of data splitting into train/test (validation also).

  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5% to 20% of your dataset to use as test data.

  • disable_test_val_fold (bool) – Do not create a TEST_VAL set. All records which would be part of the TEST_VAL fold otherwise, remain in the TEST fold.

  • k_fold_cross_validation (bool) – Use this to force k-fold cross validation bagging on or off.

  • num_cv_folds (int) – Specify the value of k in k-fold cross validation.

  • timestamp_based_splitting_column (str) – Timestamp column selected for splitting into test and train.

  • timestamp_based_splitting_method (RegressionTimeSplitMethod) – Method of selecting TEST set, top percentile wise or after a given timestamp.

  • test_splitting_timestamp (str) – Rows with timestamp greater than this will be considered to be in the test set.

  • sampling_unit_keys (List[str]) – Constrain train/test separation to partition a column.

  • test_row_indicator (str) – Column indicating which rows to use for training (TRAIN) and testing (TEST). Validation (VAL) can also be specified.

  • full_data_retraining (bool) – Train models separately with all the data.

  • rebalance_classes (bool) – Class weights are computed as the inverse of the class frequency from the training dataset when this option is selected as “Yes”. It is useful when the classes in the dataset are unbalanced. Re-balancing classes generally boosts recall at the cost of precision on rare classes.

  • rare_class_augmentation_threshold (float) – Augments any rare class whose relative frequency with respect to the most frequent class is less than this threshold. Default = 0.1 for classification problems with rare classes.

  • augmentation_strategy (RegressionAugmentationStrategy) – Strategy to deal with class imbalance and data augmentation.

  • training_rows_downsample_ratio (float) – Uses this ratio to train on a sample of the dataset provided.

  • active_labels_column (str) – Specify a column to use as the active columns in a multi label setting.

  • min_categorical_count (int) – Minimum threshold to consider a value different from the unknown placeholder.

  • sample_weight (str) – Specify a column to use as the weight of a sample for training and eval.

  • numeric_clipping_percentile (float) – Uses this option to clip the top and bottom x percentile of numeric feature columns where x is the value of this option.

  • target_transform (RegressionTargetTransform) – Specify a transform (e.g. log, quantile) to apply to the target variable.

  • ignore_datetime_features (bool) – Remove all datetime features from the model. Useful while generalizing to different time periods.

  • max_text_words (int) – Maximum number of words to use from text fields.

  • perform_feature_selection (bool) – If enabled, additional algorithms which support feature selection as a pretraining step will be trained separately with the selected subset of features. The details about their selected features can be found in their respective logs.

  • feature_selection_intensity (int) – This determines the strictness with which features will be filtered out. 1 being very lenient (more features kept), 100 being very strict.

  • batch_size (BatchSize) – Batch size.

  • dropout_rate (int) – Dropout percentage rate.

  • pretrained_model_name (str) – Enable algorithms which process text using pretrained multilingual NLP models.

  • pretrained_llm_name (str) – Enable algorithms which process text using pretrained large language models.

  • is_multilingual (bool) – Enable algorithms which process text using pretrained multilingual NLP models.

  • loss_function (RegressionLossFunction) – Loss function to be used as objective for model training.

  • loss_parameters (str) – Loss function params in format <key>=<value>;<key>=<value>;…..

  • target_encode_categoricals (bool) – Use this to turn target encoding on categorical features on or off.

  • drop_original_categoricals (bool) – This option helps us choose whether to also feed the original label encoded categorical columns to the mdoels along with their target encoded versions.

  • monotonically_increasing_features (List[str]) – Constrain the model such that it behaves as if the target feature is monotonically increasing with the selected features

  • monotonically_decreasing_features (List[str]) – Constrain the model such that it behaves as if the target feature is monotonically decreasing with the selected features

  • data_split_feature_group_table_name (str) – Specify the table name of the feature group to export training data with the fold column.

  • custom_loss_functions (List[str]) – Registered custom losses available for selection.

  • custom_metrics (List[str]) – Registered custom metrics available for selection.

  • partial_dependence_analysis (PartialDependenceAnalysis) – Specify whether to run partial dependence plots for all features or only some features.

  • do_masked_language_model_pretraining (bool) – Specify whether to run a masked language model unsupervised pretraining step before supervized training in certain supported algorithms which use BERT-like backbones.

  • max_tokens_in_sentence (int) – Specify the max tokens to be kept in a sentence based on the truncation strategy.

  • truncation_strategy (str) – What strategy to use to deal with text rows with more than a given number of tokens (if num of tokens is more than “max_tokens_in_sentence”).

objective: abacusai.api_class.enums.RegressionObjective = None
sort_objective: abacusai.api_class.enums.RegressionObjective = None
tree_hpo_mode: abacusai.api_class.enums.RegressionTreeHPOMode = None
partial_dependence_analysis: abacusai.api_class.enums.PartialDependenceAnalysis = None
type_of_split: abacusai.api_class.enums.RegressionTypeOfSplit = None
test_split: int = None
disable_test_val_fold: bool = None
k_fold_cross_validation: bool = None
num_cv_folds: int = None
timestamp_based_splitting_column: str = None
timestamp_based_splitting_method: abacusai.api_class.enums.RegressionTimeSplitMethod = None
test_splitting_timestamp: str = None
sampling_unit_keys: List[str] = None
test_row_indicator: str = None
full_data_retraining: bool = None
rebalance_classes: bool = None
rare_class_augmentation_threshold: float = None
augmentation_strategy: abacusai.api_class.enums.RegressionAugmentationStrategy = None
training_rows_downsample_ratio: float = None
active_labels_column: str = None
min_categorical_count: int = None
sample_weight: str = None
numeric_clipping_percentile: float = None
target_transform: abacusai.api_class.enums.RegressionTargetTransform = None
ignore_datetime_features: bool = None
max_text_words: int = None
perform_feature_selection: bool = None
feature_selection_intensity: int = None
batch_size: abacusai.api_class.enums.BatchSize = None
dropout_rate: int = None
pretrained_model_name: str = None
pretrained_llm_name: str = None
is_multilingual: bool = None
do_masked_language_model_pretraining: bool = None
max_tokens_in_sentence: int = None
truncation_strategy: str = None
loss_function: abacusai.api_class.enums.RegressionLossFunction = None
loss_parameters: str = None
target_encode_categoricals: bool = None
drop_original_categoricals: bool = None
monotonically_increasing_features: List[str] = None
monotonically_decreasing_features: List[str] = None
data_split_feature_group_table_name: str = None
custom_loss_functions: List[str] = None
custom_metrics: List[str] = None
__post_init__()
class abacusai.api_class.ForecastingTrainingConfig

Bases: TrainingConfig

Training config for the FORECASTING problem type

Parameters:
  • prediction_length (int) – How many timesteps in the future to predict.

  • objective (ForecastingObjective) – Ranking scheme used to select final best model.

  • sort_objective (ForecastingObjective) – Ranking scheme used to sort models on the metrics page.

  • forecast_frequency (ForecastingFrequency) – Forecast frequency.

  • probability_quantiles (List[float]) – Prediction quantiles.

  • force_prediction_length (int) – Force length of test window to be the same as prediction length.

  • filter_items (bool) – Filter items with small history and volume.

  • enable_feature_selection (bool) – Enable feature selection.

  • enable_padding (bool) – Pad series to the max_date of the dataset

  • enable_cold_start (bool) – Enable cold start forecasting by training/predicting for zero history items.

  • enable_multiple_backtests (bool) – Whether to enable multiple backtesting or not.

  • num_backtesting_windows (int) – Total backtesting windows to use for the training.

  • backtesting_window_step_size (int) – Use this step size to shift backtesting windows for model training.

  • full_data_retraining (bool) – Train models separately with all the data.

  • additional_forecast_keys – List[str]: List of categoricals in timeseries that can act as multi-identifier.

  • experimentation_mode (ExperimentationMode) – Selecting Thorough Experimentation will take longer to train.

  • type_of_split (ForecastingDataSplitType) – Type of data splitting into train/test.

  • test_by_item (bool) – Partition train/test data by item rather than time if true.

  • test_start (str) – Limit training data to dates before the given test start.

  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5% to 20% of your dataset to use as test data.

  • loss_function (ForecastingLossFunction) – Loss function for training neural network.

  • underprediction_weight (float) – Weight for underpredictions

  • disable_networks_without_analytic_quantiles (bool) – Disable neural networks, which quantile functions do not have analytic expressions (e.g, mixture models)

  • initial_learning_rate (float) – Initial learning rate.

  • l2_regularization_factor (float) – L2 regularization factor.

  • dropout_rate (int) – Dropout percentage rate.

  • recurrent_layers (int) – Number of recurrent layers to stack in network.

  • recurrent_units (int) – Number of units in each recurrent layer.

  • convolutional_layers (int) – Number of convolutional layers to stack on top of recurrent layers in network.

  • convolution_filters (int) – Number of filters in each convolution.

  • local_scaling_mode (ForecastingLocalScaling) – Options to make NN inputs stationary in high dynamic range datasets.

  • zero_predictor (bool) – Include subnetwork to classify points where target equals zero.

  • skip_missing (bool) – Make the RNN ignore missing entries rather instead of processing them.

  • batch_size (ForecastingBatchSize) – Batch size.

  • batch_renormalization (bool) – Enable batch renormalization between layers.

  • history_length (int) – While training, how much history to consider.

  • prediction_step_size (int) – Number of future periods to include in objective for each training sample.

  • training_point_overlap (float) – Amount of overlap to allow between training samples.

  • max_scale_context (int) – Maximum context to use for local scaling.

  • quantiles_extension_method (ForecastingQuanitlesExtensionMethod) – Quantile extension method

  • number_of_samples (int) – Number of samples for ancestral simulation

  • symmetrize_quantiles (bool) – Force symmetric quantiles (like in Gaussian distribution)

  • use_log_transforms (bool) – Apply logarithmic transformations to input data.

  • smooth_history (float) – Smooth (low pass filter) the timeseries.

  • local_scale_target (bool) – Using per training/prediction window target scaling.

  • use_clipping (bool) – Apply clipping to input data to stabilize the training.

  • timeseries_weight_column (str) – If set, we use the values in this column from timeseries data to assign time dependent item weights during training and evaluation.

  • item_attributes_weight_column (str) – If set, we use the values in this column from item attributes data to assign weights to items during training and evaluation.

  • use_timeseries_weights_in_objective (bool) – If True, we include weights from column set as “TIMESERIES WEIGHT COLUMN” in objective functions.

  • use_item_weights_in_objective (bool) – If True, we include weights from column set as “ITEM ATTRIBUTES WEIGHT COLUMN” in objective functions.

  • skip_timeseries_weight_scaling (bool) – If True, we will avoid normalizing the weights.

  • timeseries_loss_weight_column (str) – Use value in this column to weight the loss while training.

  • use_item_id (bool) – Include a feature to indicate the item being forecast.

  • use_all_item_totals (bool) – Include as input total target across items.

  • handle_zeros_as_missing_values (bool) – If True, handle zero values in demand as missing data.

  • datetime_holiday_calendars (List[HolidayCalendars]) – Holiday calendars to augment training with.

  • fill_missing_values (List[List[dict]]) – Strategy for filling in missing values.

  • enable_clustering (bool) – Enable clustering in forecasting.

  • data_split_feature_group_table_name (str) – Specify the table name of the feature group to export training data with the fold column.

  • custom_loss_functions (List[str]) – Registered custom losses available for selection.

  • custom_metrics (List[str]) – Registered custom metrics available for selection.

  • return_fractional_forecasts – Use this to return fractional forecast values while prediction

  • allow_training_with_small_history – Allows training with fewer than 100 rows in the dataset

prediction_length: int = None
objective: abacusai.api_class.enums.ForecastingObjective = None
sort_objective: abacusai.api_class.enums.ForecastingObjective = None
forecast_frequency: abacusai.api_class.enums.ForecastingFrequency = None
probability_quantiles: List[float] = None
force_prediction_length: bool = None
filter_items: bool = None
enable_feature_selection: bool = None
enable_padding: bool = None
enable_cold_start: bool = None
enable_multiple_backtests: bool = None
num_backtesting_windows: int = None
backtesting_window_step_size: int = None
full_data_retraining: bool = None
additional_forecast_keys: List[str] = None
experimentation_mode: abacusai.api_class.enums.ExperimentationMode = None
type_of_split: abacusai.api_class.enums.ForecastingDataSplitType = None
test_by_item: bool = None
test_start: str = None
test_split: int = None
loss_function: abacusai.api_class.enums.ForecastingLossFunction = None
underprediction_weight: float = None
disable_networks_without_analytic_quantiles: bool = None
initial_learning_rate: float = None
l2_regularization_factor: float = None
dropout_rate: int = None
recurrent_layers: int = None
recurrent_units: int = None
convolutional_layers: int = None
convolution_filters: int = None
local_scaling_mode: abacusai.api_class.enums.ForecastingLocalScaling = None
zero_predictor: bool = None
skip_missing: bool = None
batch_size: abacusai.api_class.enums.BatchSize = None
batch_renormalization: bool = None
history_length: int = None
prediction_step_size: int = None
training_point_overlap: float = None
max_scale_context: int = None
quantiles_extension_method: abacusai.api_class.enums.ForecastingQuanitlesExtensionMethod = None
number_of_samples: int = None
symmetrize_quantiles: bool = None
use_log_transforms: bool = None
smooth_history: float = None
local_scale_target: bool = None
use_clipping: bool = None
timeseries_weight_column: str = None
item_attributes_weight_column: str = None
use_timeseries_weights_in_objective: bool = None
use_item_weights_in_objective: bool = None
skip_timeseries_weight_scaling: bool = None
timeseries_loss_weight_column: str = None
use_item_id: bool = None
use_all_item_totals: bool = None
handle_zeros_as_missing_values: bool = None
datetime_holiday_calendars: List[abacusai.api_class.enums.HolidayCalendars] = None
fill_missing_values: List[List[dict]] = None
enable_clustering: bool = None
data_split_feature_group_table_name: str = None
custom_loss_functions: List[str] = None
custom_metrics: List[str] = None
return_fractional_forecasts: bool = None
allow_training_with_small_history: bool = None
__post_init__()
class abacusai.api_class.NamedEntityExtractionTrainingConfig

Bases: TrainingConfig

Training config for the NAMED_ENTITY_EXTRACTION problem type

Parameters:
  • llm_for_ner (NERForLLM) – LLM to use for NER from among available LLM

  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.

  • test_row_indicator (str) – Column indicating which rows to use for training (TRAIN) and testing (TEST).

  • active_labels_column (str) – Entities that have been marked in a particular text

  • document_format (NLPDocumentFormat) – Format of the input documents.

  • minimum_bounding_box_overlap_ratio (float) – Tokens are considered to belong to annotation if the user bounding box is provided and ratio of (token_bounding_box ∩ annotation_bounding_box) / token_bounding_area is greater than the provided value.

  • save_predicted_pdf (bool) – Whether to save predicted PDF documents

  • enhanced_ocr (bool) – Enhanced text extraction from predicted digital documents

  • additional_extraction_instructions (str) – Additional instructions to guide the LLM in extracting the entities. Only used with LLM algorithms.

llm_for_ner: abacusai.api_class.enums.LLMName = None
test_split: int = None
test_row_indicator: str = None
active_labels_column: str = None
document_format: abacusai.api_class.enums.NLPDocumentFormat = None
minimum_bounding_box_overlap_ratio: float = 0.0
save_predicted_pdf: bool = True
enhanced_ocr: bool = False
additional_extraction_instructions: str = None
__post_init__()
class abacusai.api_class.NaturalLanguageSearchTrainingConfig

Bases: TrainingConfig

Training config for the NATURAL_LANGUAGE_SEARCH problem type

Parameters:
  • abacus_internal_model (bool) – Use a Abacus.AI LLM to answer questions about your data without using any external APIs

  • num_completion_tokens (int) – Default for maximum number of tokens for chat answers. Reducing this will get faster responses which are more succinct

  • larger_embeddings (bool) – Use a higher dimension embedding model.

  • search_chunk_size (int) – Chunk size for indexing the documents.

  • chunk_overlap_fraction (float) – Overlap in chunks while indexing the documents.

  • index_fraction (float) – Fraction of the chunk to use for indexing.

abacus_internal_model: bool = None
num_completion_tokens: int = None
larger_embeddings: bool = None
search_chunk_size: int = None
index_fraction: float = None
chunk_overlap_fraction: float = None
__post_init__()
class abacusai.api_class.ChatLLMTrainingConfig

Bases: TrainingConfig

Training config for the CHAT_LLM problem type

Parameters:
  • document_retrievers (List[str]) – List of names or IDs of document retrievers to use as vector stores of information for RAG responses.

  • num_completion_tokens (int) – Default for maximum number of tokens for chat answers. Reducing this will get faster responses which are more succinct.

  • temperature (float) – The generative LLM temperature.

  • retrieval_columns (list) – Include the metadata column values in the retrieved search results.

  • filter_columns (list) – Allow users to filter the document retrievers on these metadata columns.

  • include_general_knowledge (bool) – Allow the LLM to rely not just on RAG search results, but to fall back on general knowledge. Disabled by default.

  • enable_web_search (bool) – Allow the LLM to use Web Search Engines to retrieve information for better results.

  • behavior_instructions (str) – Customize the overall behaviour of the model. This controls things like - when to execute code (if enabled), write sql query, search web (if enabled), etc.

  • response_instructions (str) – Customized instructions for how the model should respond inlcuding the format, persona and tone of the answers.

  • enable_llm_rewrite (bool) – If enabled, an LLM will rewrite the RAG queries sent to document retriever. Disabled by default.

  • column_filtering_instructions (str) – Instructions for a LLM call to automatically generate filter expressions on document metadata to retrieve relevant documents for the conversation.

  • keyword_requirement_instructions (str) – Instructions for a LLM call to automatically generate keyword requirements to retrieve relevant documents for the conversation.

  • query_rewrite_instructions (str) – Special instructions for the LLM which rewrites the RAG query.

  • max_search_results (int) – Maximum number of search results in the retrieval augmentation step. If we know that the questions are likely to have snippets which are easily matched in the documents, then a lower number will help with accuracy.

  • data_feature_group_ids – (List[str]): List of feature group IDs to use to possibly query for the ChatLLM. The created ChatLLM is commonly referred to as DataLLM.

  • data_prompt_context (str) – Prompt context for the data feature group IDs.

  • data_prompt_table_context (Dict[str, str]) – Dict of table name and table context pairs to provide table wise context for each structured data table.

  • data_prompt_column_context (Dict[str, str]) – Dict of ‘table_name.column_name’ and ‘column_context’ pairs to provide column context for some selected columns in the selected structured data table. This replaces the default auto-generated information about the column data.

  • hide_sql_and_code (bool) – When running data queries, this will hide the generated SQL and Code in the response.

  • disable_data_summarization (bool) – After executing a query summarize the reponse and reply back with only the table and query run.

  • data_columns_to_ignore (List[str]) – Columns to ignore while encoding information about structured data tables in context for the LLM. A list of strings of format “<table_name>.<column_name>”

  • search_score_cutoff (float) – Minimum search score to consider a document as a valid search result.

  • include_bm25_retrieval (bool) – Combine BM25 search score with vector search using reciprocal rank fusion.

  • database_connector_id (str) – Database connector ID to use for connecting external database that gives access to structured data to the LLM.

  • database_connector_tables (List[str]) – List of tables to use from the database connector for the ChatLLM.

  • enable_code_execution (bool) – Enable python code execution in the ChatLLM. This equips the LLM with a python kernel in which all its code is executed.

  • enable_response_caching (bool) – Enable caching of LLM responses to speed up response times and improve reproducibility.

  • unknown_answer_phrase (str) – Fallback response when the LLM can’t find an answer.

  • enable_tool_bar (bool) – Enable the tool bar in Enterprise ChatLLM to provide additional functionalities like tool_use, web_search, image_gen, etc.

  • enable_inline_source_citations (bool) – Enable inline citations of the sources in the response.

  • response_format – (str): When set to ‘JSON’, the LLM will generate a JSON formatted string.

  • json_response_instructions (str) – Instructions to be followed while generating the json_response if response_format is set to “JSON”. This can include the schema information if the schema is dynamic and its keys cannot be pre-determined.

  • json_response_schema (str) – Specifies the JSON schema that the model should adhere to if response_format is set to “JSON”. This should be a json-formatted string where each field of the expected schema is mapped to a dictionary containing the fields ‘type’, ‘required’ and ‘description’. For example - ‘{“sample_field”: {“type”: “integer”, “required”: true, “description”: “Sample Field”}}’

document_retrievers: List[str] = None
num_completion_tokens: int = None
temperature: float = None
retrieval_columns: list = None
filter_columns: list = None
include_general_knowledge: bool = None
behavior_instructions: str = None
response_instructions: str = None
enable_llm_rewrite: bool = None
column_filtering_instructions: str = None
keyword_requirement_instructions: str = None
query_rewrite_instructions: str = None
max_search_results: int = None
data_feature_group_ids: List[str] = None
data_prompt_context: str = None
data_prompt_table_context: Dict[str, str] = None
data_prompt_column_context: Dict[str, str] = None
hide_sql_and_code: bool = None
disable_data_summarization: bool = None
data_columns_to_ignore: List[str] = None
search_score_cutoff: float = None
include_bm25_retrieval: bool = None
database_connector_id: str = None
database_connector_tables: List[str] = None
enable_code_execution: bool = None
metadata_columns: list = None
lookup_rewrite_instructions: str = None
enable_response_caching: bool = None
unknown_answer_phrase: str = None
enable_tool_bar: bool = None
enable_inline_source_citations: bool = None
response_format: str = None
json_response_instructions: str = None
json_response_schema: str = None
__post_init__()
class abacusai.api_class.SentenceBoundaryDetectionTrainingConfig

Bases: TrainingConfig

Training config for the SENTENCE_BOUNDARY_DETECTION problem type

Parameters:
  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.

  • dropout_rate (float) – Dropout rate for neural network.

  • batch_size (BatchSize) – Batch size for neural network.

test_split: int = None
dropout_rate: float = None
batch_size: abacusai.api_class.enums.BatchSize = None
__post_init__()
class abacusai.api_class.SentimentDetectionTrainingConfig

Bases: TrainingConfig

Training config for the SENTIMENT_DETECTION problem type

Parameters:
  • sentiment_type (SentimentType) – Type of sentiment to detect.

  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.

sentiment_type: abacusai.api_class.enums.SentimentType = None
test_split: int = None
__post_init__()
class abacusai.api_class.DocumentClassificationTrainingConfig

Bases: TrainingConfig

Training config for the DOCUMENT_CLASSIFICATION problem type

Parameters:
  • zero_shot_hypotheses (List[str]) – Zero shot hypotheses. Example text: ‘This text is about pricing’.

  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.

zero_shot_hypotheses: List[str] = None
test_split: int = None
__post_init__()
class abacusai.api_class.DocumentSummarizationTrainingConfig

Bases: TrainingConfig

Training config for the DOCUMENT_SUMMARIZATION problem type

Parameters:
  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.

  • dropout_rate (float) – Dropout rate for neural network.

  • batch_size (BatchSize) – Batch size for neural network.

test_split: int = None
dropout_rate: float = None
batch_size: abacusai.api_class.enums.BatchSize = None
__post_init__()
class abacusai.api_class.DocumentVisualizationTrainingConfig

Bases: TrainingConfig

Training config for the DOCUMENT_VISUALIZATION problem type

Parameters:
  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.

  • dropout_rate (float) – Dropout rate for neural network.

  • batch_size (BatchSize) – Batch size for neural network.

test_split: int = None
dropout_rate: float = None
batch_size: abacusai.api_class.enums.BatchSize = None
__post_init__()
class abacusai.api_class.ClusteringTrainingConfig

Bases: TrainingConfig

Training config for the CLUSTERING problem type

Parameters:

num_clusters_selection (int) – Number of clusters. If None, will be selected automatically.

num_clusters_selection: int = None
__post_init__()
class abacusai.api_class.ClusteringTimeseriesTrainingConfig

Bases: TrainingConfig

Training config for the CLUSTERING_TIMESERIES problem type

Parameters:
  • num_clusters_selection (int) – Number of clusters. If None, will be selected automatically.

  • imputation (ClusteringImputationMethod) – Imputation method for missing values.

num_clusters_selection: int = None
imputation: abacusai.api_class.enums.ClusteringImputationMethod = None
__post_init__()
class abacusai.api_class.EventAnomalyTrainingConfig

Bases: TrainingConfig

Training config for the EVENT_ANOMALY problem type

Parameters:

anomaly_fraction (float) – The fraction of the dataset to classify as anomalous, between 0 and 0.5

anomaly_fraction: float = None
__post_init__()
class abacusai.api_class.TimeseriesAnomalyTrainingConfig

Bases: TrainingConfig

Training config for the TS_ANOMALY problem type

Parameters:
  • type_of_split (TimeseriesAnomalyDataSplitType) – Type of data splitting into train/test.

  • test_start (str) – Limit training data to dates before the given test start.

  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.

  • fill_missing_values (List[List[dict]]) – strategies to fill missing values and missing timestamps

  • handle_zeros_as_missing_values (bool) – If True, handle zero values in numeric columns as missing data

  • timeseries_frequency (str) – set this to control frequency of filling missing values

  • min_samples_in_normal_region (int) – Adjust this to fine-tune the number of anomalies to be identified.

  • anomaly_type (TimeseriesAnomalyTypeOfAnomaly) – select what kind of peaks to detect as anomalies

  • hyperparameter_calculation_with_heuristics (TimeseriesAnomalyUseHeuristic) – Enable heuristic calculation to get hyperparameters for the model

  • threshold_score (float) – Threshold score for anomaly detection

  • additional_anomaly_ids (List[str]) – List of categorical columns that can act as multi-identifier

type_of_split: abacusai.api_class.enums.TimeseriesAnomalyDataSplitType = None
test_start: str = None
test_split: int = None
fill_missing_values: List[List[dict]] = None
handle_zeros_as_missing_values: bool = None
timeseries_frequency: str = None
min_samples_in_normal_region: int = None
anomaly_type: abacusai.api_class.enums.TimeseriesAnomalyTypeOfAnomaly = None
hyperparameter_calculation_with_heuristics: abacusai.api_class.enums.TimeseriesAnomalyUseHeuristic = None
threshold_score: float = None
additional_anomaly_ids: List[str] = None
__post_init__()
class abacusai.api_class.CumulativeForecastingTrainingConfig

Bases: TrainingConfig

Training config for the CUMULATIVE_FORECASTING problem type

Parameters:
  • test_split (int) – Percent of dataset to use for test data. We support using a range between 5 ( i.e. 5% ) to 20 ( i.e. 20% ) of your dataset.

  • historical_frequency (str) – Forecast frequency

  • cumulative_prediction_lengths (List[int]) – List of Cumulative Prediction Frequencies. Each prediction length must be between 1 and 365.

  • skip_input_transform (bool) – Avoid doing numeric scaling transformations on the input.

  • skip_target_transform (bool) – Avoid doing numeric scaling transformations on the target.

  • predict_residuals (bool) – Predict residuals instead of totals at each prediction step.

test_split: int = None
historical_frequency: str = None
cumulative_prediction_lengths: List[int] = None
skip_input_transform: bool = None
skip_target_transform: bool = None
predict_residuals: bool = None
__post_init__()
class abacusai.api_class.ThemeAnalysisTrainingConfig

Bases: TrainingConfig

Training config for the THEME ANALYSIS problem type

__post_init__()
class abacusai.api_class.AIAgentTrainingConfig

Bases: TrainingConfig

Training config for the AI_AGENT problem type

Parameters:
  • description (str) – Description of the agent function.

  • agent_interface (AgentInterface) – The interface that the agent will be deployed with.

  • agent_connectors – (List[enums.ApplicationConnectorType]): The connectors needed for the agent to function.

description: str = None
agent_interface: abacusai.api_class.enums.AgentInterface = None
agent_connectors: List[abacusai.api_class.enums.ApplicationConnectorType] = None
enable_binary_input: bool = None
agent_input_schema: dict = None
agent_output_schema: dict = None
__post_init__()
class abacusai.api_class.CustomTrainedModelTrainingConfig

Bases: TrainingConfig

Training config for the CUSTOM_TRAINED_MODEL problem type

Parameters:
  • max_catalog_size (int) – Maximum expected catalog size.

  • max_dimension (int) – Maximum expected dimension of the catalog.

  • index_output_path (str) – Fully qualified cloud location (GCS, S3, etc) to export snapshots of the embedding to.

  • docker_image_uri (str) – Docker image URI.

  • service_port (int) – Service port.

  • streaming_embeddings (bool) – Flag to enable streaming embeddings.

max_catalog_size: int = None
max_dimension: int = None
index_output_path: str = None
docker_image_uri: str = None
service_port: int = None
streaming_embeddings: bool = None
__post_init__()
class abacusai.api_class.CustomAlgorithmTrainingConfig

Bases: TrainingConfig

Training config for the CUSTOM_ALGORITHM problem type

Parameters:

timeout_minutes (int) – Timeout for the model training in minutes.

timeout_minutes: int = None
__post_init__()
class abacusai.api_class.OptimizationTrainingConfig

Bases: TrainingConfig

Training config for the OPTIMIZATION problem type

Parameters:
  • solve_time_limit (float) – The maximum time in seconds to spend solving the problem. Accepts values between 0 and 86400.

  • optimality_gap_limit (float) – The stopping optimality gap limit. Optimality gap is fractional difference between the best known solution and the best possible solution. Accepts values between 0 and 1.

  • include_all_partitions (bool) – Include all partitions in the model training. Default is False.

  • include_specific_partitions (List[str]) – Include specific partitions in partitioned model training. Default is empty list.

solve_time_limit: float = None
optimality_gap_limit: float = None
include_all_partitions: bool = None
include_specific_partitions: List[str] = None
__post_init__()
class abacusai.api_class._TrainingConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'problem_type'
config_class_map
class abacusai.api_class.DeployableAlgorithm

Bases: abacusai.api_class.abstract.ApiClass

Algorithm that can be deployed to a model.

Parameters:
  • algorithm (str) – ID of the algorithm.

  • name (str) – Name of the algorithm.

  • only_offline_deployable (bool) – Whether the algorithm can only be deployed offline.

  • trained_model_types (List[dict]) – List of trained model types.

algorithm: str = None
name: str = None
only_offline_deployable: bool = None
trained_model_types: List[dict] = None
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class.StdDevThresholdType

Bases: ApiEnum

Generic enumeration.

Derive from this class to define new enumerations.

ABSOLUTE = 'ABSOLUTE'
PERCENTILE = 'PERCENTILE'
STDDEV = 'STDDEV'
class abacusai.api_class.TimeWindowConfig

Bases: abacusai.api_class.abstract.ApiClass

Time Window Configuration

Parameters:
  • window_duration (int) – The duration of the window.

  • window_from_start (bool) – Whether the window should be from the start of the time series.

window_duration: int = None
window_from_start: bool = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.ForecastingMonitorConfig

Bases: abacusai.api_class.abstract.ApiClass

Forecasting Monitor Configuration

Parameters:
  • id_column (str) – The name of the column that contains the unique identifier for the time series.

  • timestamp_column (str) – The name of the column that contains the timestamp for the time series.

  • target_column (str) – The name of the column that contains the target value for the time series.

  • start_time (str) – The start time of the time series data.

  • end_time (str) – The end time of the time series data.

  • window_config (TimeWindowConfig) – The windowing configuration for the time series data.

id_column: str = None
timestamp_column: str = None
target_column: str = None
start_time: str = None
end_time: str = None
window_config: TimeWindowConfig = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.StdDevThreshold

Bases: abacusai.api_class.abstract.ApiClass

Std Dev Threshold types

Parameters:
  • threshold_type (StdDevThresholdType) – Type of threshold to apply to the item attributes.

  • value (float) – Value to use for the threshold.

threshold_type: abacusai.api_class.enums.StdDevThresholdType = None
value: float = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.ItemAttributesStdDevThreshold

Bases: abacusai.api_class.abstract.ApiClass

Item Attributes Std Dev Threshold for Monitor Alerts

Parameters:
lower_bound: StdDevThreshold = None
upper_bound: StdDevThreshold = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.RestrictFeatureMappings

Bases: abacusai.api_class.abstract.ApiClass

Restrict Feature Mappings for Monitor Filtering

Parameters:
  • feature_name (str) – The name of the feature to restrict the monitor to.

  • restricted_feature_values (list) – The values of the feature to restrict the monitor to if feature is a categorical.

  • start_time (str) – The start time of the timestamp feature to filter from

  • end_time (str) – The end time of the timestamp feature to filter until

  • min_value (float) – Value to filter the numerical feature above

  • max_value (float) – Filtering the numerical feature to below this value

feature_name: str = None
restricted_feature_values: list = []
start_time: str = None
end_time: str = None
min_value: float = None
max_value: float = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.MonitorFilteringConfig

Bases: abacusai.api_class.abstract.ApiClass

Monitor Filtering Configuration

Parameters:
  • start_time (str) – The start time of the prediction time col

  • end_time (str) – The end time of the prediction time col

  • restrict_feature_mappings (RestrictFeatureMappings) – The feature mapping to restrict the monitor to.

  • target_class (str) – The target class to restrict the monitor to.

  • train_target_feature (str) – Set the target feature for the training data.

  • prediction_target_feature (str) – Set the target feature for the prediction data.

start_time: str = None
end_time: str = None
restrict_feature_mappings: List[RestrictFeatureMappings] = None
target_class: str = None
train_target_feature: str = None
prediction_target_feature: str = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class._ApiClassFactory

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class = None
config_class_key = None
config_class_map
classmethod from_dict(config)
Parameters:

config (dict)

Return type:

ApiClass

class abacusai.api_class.AlertConditionConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for alert condition configs

alert_type: abacusai.api_class.enums.MonitorAlertType = None
classmethod _get_builder()
class abacusai.api_class.AccuracyBelowThresholdConditionConfig

Bases: AlertConditionConfig

Accuracy Below Threshold Condition Config for Monitor Alerts

Parameters:

threshold (float) – Threshold for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

threshold: float = None
__post_init__()
class abacusai.api_class.FeatureDriftConditionConfig

Bases: AlertConditionConfig

Feature Drift Condition Config for Monitor Alerts

Parameters:
  • feature_drift_type (FeatureDriftType) – Feature drift type to apply the threshold on to determine whether a column has drifted significantly enough to be a violation.

  • threshold (float) – Threshold for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

  • minimum_violations (int) – Number of columns that must exceed the specified threshold to trigger an alert.

  • feature_names (List[str]) – List of feature names to monitor for this alert.

feature_drift_type: abacusai.api_class.enums.FeatureDriftType = None
threshold: float = None
minimum_violations: int = None
feature_names: List[str] = None
__post_init__()
class abacusai.api_class.TargetDriftConditionConfig

Bases: AlertConditionConfig

Target Drift Condition Config for Monitor Alerts

Parameters:
  • feature_drift_type (FeatureDriftType) – Target drift type to apply the threshold on to determine whether a column has drifted significantly enough to be a violation.

  • threshold (float) – Threshold for when to consider the target column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

feature_drift_type: abacusai.api_class.enums.FeatureDriftType = None
threshold: float = None
__post_init__()
class abacusai.api_class.HistoryLengthDriftConditionConfig

Bases: AlertConditionConfig

History Length Drift Condition Config for Monitor Alerts

Parameters:
  • feature_drift_type (FeatureDriftType) – History length drift type to apply the threshold on to determine whether the history length has drifted significantly enough to be a violation.

  • threshold (float) – Threshold for when to consider the history length to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

feature_drift_type: abacusai.api_class.enums.FeatureDriftType = None
threshold: float = None
__post_init__()
class abacusai.api_class.DataIntegrityViolationConditionConfig

Bases: AlertConditionConfig

Data Integrity Violation Condition Config for Monitor Alerts

Parameters:
  • data_integrity_type (DataIntegrityViolationType) – This option selects the data integrity violations to monitor for this alert.

  • minimum_violations (int) – Number of columns that must exceed the specified threshold to trigger an alert.

data_integrity_type: abacusai.api_class.enums.DataIntegrityViolationType = None
minimum_violations: int = None
__post_init__()
class abacusai.api_class.BiasViolationConditionConfig

Bases: AlertConditionConfig

Bias Violation Condition Config for Monitor Alerts

Parameters:
  • bias_type (BiasType) – This option selects the bias metric to monitor for this alert.

  • threshold (float) – Threshold for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

  • minimum_violations (int) – Number of columns that must exceed the specified threshold to trigger an alert.

bias_type: abacusai.api_class.enums.BiasType = None
threshold: float = None
minimum_violations: int = None
__post_init__()
class abacusai.api_class.PredictionCountConditionConfig

Bases: AlertConditionConfig

Deployment Prediction Condition Config for Deployment Alerts. By default we monitor if predictions made over a time window has reduced significantly. :param threshold: Threshold for when to consider to be a violation. Negative means alert on reduction, positive means alert on increase. :type threshold: float :param aggregation_window: Time window to aggregate the predictions over, e.g. 1h, 10m. Only h(hour), m(minute) and s(second) are supported. :type aggregation_window: str :param aggregation_type: Aggregation type to use for the aggregation window, e.g. sum, avg. :type aggregation_type: str

threshold: float = None
aggregation_window: str = None
aggregation_type: str = None
__post_init__()
class abacusai.api_class._AlertConditionConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'alert_type'
config_class_key_value_camel_case = True
config_class_map
class abacusai.api_class.AlertActionConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for alert action configs

action_type: abacusai.api_class.enums.AlertActionType = None
classmethod _get_builder()
class abacusai.api_class.EmailActionConfig

Bases: AlertActionConfig

Email Action Config for Monitor Alerts

Parameters:
  • email_recipients (List[str]) – List of email addresses to send the alert to.

  • email_body (str) – Body of the email to send.

email_recipients: List[str] = None
email_body: str = None
__post_init__()
class abacusai.api_class._AlertActionConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'action_type'
config_class_map
class abacusai.api_class.MonitorThresholdConfig

Bases: abacusai.api_class.abstract.ApiClass

Monitor Threshold Config for Monitor Alerts

Parameters:
  • drift_type (FeatureDriftType) – Feature drift type to apply the threshold on to determine whether a column has drifted significantly enough to be a violation.

  • threshold_config (ThresholdConfigs) – Thresholds for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

drift_type: abacusai.api_class.enums.FeatureDriftType = None
at_risk_threshold: float = None
severely_drifting_threshold: float = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class._ApiClassFactory

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class = None
config_class_key = None
config_class_map
classmethod from_dict(config)
Parameters:

config (dict)

Return type:

ApiClass

class abacusai.api_class.FeatureMappingConfig

Bases: abacusai.api_class.abstract.ApiClass

Feature mapping configuration for a feature group type.

Parameters:
  • feature_name (str) – The name of the feature in the feature group.

  • feature_mapping (str) – The desired feature mapping for the feature.

  • nested_feature_name (str) – The name of the nested feature in the feature group.

feature_name: str
feature_mapping: str = None
nested_feature_name: str = None
class abacusai.api_class.ProjectFeatureGroupTypeMappingsConfig

Bases: abacusai.api_class.abstract.ApiClass

Project feature group type mappings.

Parameters:
  • feature_group_id (str) – The unique identifier for the feature group.

  • feature_group_type (str) – The feature group type.

  • feature_mappings (List[FeatureMappingConfig]) – The feature mappings for the feature group.

feature_group_id: str
feature_group_type: str = None
feature_mappings: List[FeatureMappingConfig]
classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class.ConstraintConfig

Bases: abacusai.api_class.abstract.ApiClass

Constraint configuration.

Parameters:
  • constant (float) – The constant value for the constraint.

  • operator (str) – The operator for the constraint. Could be ‘EQ’, ‘LE’, ‘GE’

  • enforcement (str) – The enforcement for the constraint. Could be ‘HARD’ or ‘SOFT’ or ‘SKIP’. Default is ‘HARD’

  • code (str) – The code for the constraint.

  • penalty (float) – The penalty for violating the constraint.

constant: float
operator: str
enforcement: str | None = None
code: str | None = None
penalty: float | None = None
class abacusai.api_class.ProjectFeatureGroupConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for project feature group configuration.

type: abacusai.api_class.enums.ProjectConfigType = None
classmethod _get_builder()
class abacusai.api_class.ConstraintProjectFeatureGroupConfig

Bases: ProjectFeatureGroupConfig

Constraint project feature group configuration.

Parameters:

constraints (List[ConstraintConfig]) – The constraint for the feature group. Should be a list of one ConstraintConfig.

constraints: List[ConstraintConfig]
__post_init__()
class abacusai.api_class.ReviewModeProjectFeatureGroupConfig

Bases: ProjectFeatureGroupConfig

Review mode project feature group configuration.

Parameters:

is_review_mode (bool) – The review mode for the feature group.

is_review_mode: bool
__post_init__()
class abacusai.api_class._ProjectFeatureGroupConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'type'
config_class_map
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class.PythonFunctionArgument

Bases: abacusai.api_class.abstract.ApiClass

A config class for python function arguments

Parameters:
  • variable_type (PythonFunctionArgumentType) – The type of the python function argument

  • name (str) – The name of the python function variable

  • is_required (bool) – Whether the argument is required

  • value (Any) – The value of the argument

  • pipeline_variable (str) – The name of the pipeline variable to use as the value

variable_type: abacusai.api_class.enums.PythonFunctionArgumentType = None
name: str = None
is_required: bool = True
value: Any = None
pipeline_variable: str = None
class abacusai.api_class.OutputVariableMapping

Bases: abacusai.api_class.abstract.ApiClass

A config class for python function arguments

Parameters:
variable_type: abacusai.api_class.enums.PythonFunctionOutputArgumentType = None
name: str = None
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class._ApiClassFactory

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class = None
config_class_key = None
config_class_map
classmethod from_dict(config)
Parameters:

config (dict)

Return type:

ApiClass

class abacusai.api_class.FeatureGroupExportConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for feature group exports.

connector_type: abacusai.api_class.enums.ConnectorType = None
classmethod _get_builder()
class abacusai.api_class.FileConnectorExportConfig

Bases: FeatureGroupExportConfig

File connector export config for feature groups

Parameters:
  • location (str) – The location to export the feature group to

  • export_file_format (str) – The file format to export the feature group to

location: str = None
export_file_format: str = None
__post_init__()
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.DatabaseConnectorExportConfig

Bases: FeatureGroupExportConfig

Database connector export config for feature groups

Parameters:
  • database_connector_id (str) – The ID of the database connector to export the feature group to

  • mode (str) – The mode to export the feature group in

  • object_name (str) – The name of the object to export the feature group to

  • id_column (str) – The name of the ID column

  • additional_id_columns (List[str]) – Additional ID columns

  • data_columns (Dict[str, str]) – The data columns to export the feature group to

database_connector_id: str = None
mode: str = None
object_name: str = None
id_column: str = None
additional_id_columns: List[str] = None
data_columns: Dict[str, str] = None
__post_init__()
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class._FeatureGroupExportConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'connector_type'
config_class_map
class abacusai.api_class.ApiClass

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

_upper_snake_case_keys: bool = False
_support_kwargs: bool = False
__post_init__()
classmethod _get_builder()
__str__()
_repr_html_()
__getitem__(item)
Parameters:

item (str)

__setitem__(item, value)
Parameters:
  • item (str)

  • value (Any)

_unset_item(item)
Parameters:

item (str)

get(item, default=None)
Parameters:
  • item (str)

  • default (Any)

pop(item, default=NotImplemented)
Parameters:
  • item (str)

  • default (Any)

to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

classmethod from_dict(input_dict)
Parameters:

input_dict (dict)

class abacusai.api_class.ResponseSection

Bases: abacusai.api_class.abstract.ApiClass

A response section that an agent can return to render specific UI elements.

Parameters:
type: abacusai.api_class.enums.ResponseSectionType
id: str
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

abacusai.api_class.Segment
class abacusai.api_class.AgentFlowButtonResponseSection(label, agent_workflow_node_name, section_key=None)

Bases: ResponseSection

A response section that an AI Agent can return to render a button.

Parameters:
  • label (str) – The label of the button.

  • agent_workflow_node_name (str) – The workflow start node to be executed when the button is clicked.

  • section_key (str)

label: str
agent_workflow_node_name: str
class abacusai.api_class.ImageUrlResponseSection(url, height, width, section_key=None)

Bases: ResponseSection

A response section that an agent can return to render an image.

Parameters:
  • url (str) – The url of the image to be displayed.

  • height (int) – The height of the image.

  • width (int) – The width of the image.

  • section_key (str)

url: str
height: int
width: int
class abacusai.api_class.TextResponseSection(text, section_key=None)

Bases: ResponseSection

A response section that an agent can return to render text.

Parameters:
  • segment (str) – The text to be displayed.

  • text (str)

  • section_key (str)

segment: str
class abacusai.api_class.RuntimeSchemaResponseSection(json_schema, ui_schema=None, schema_prop=None)

Bases: ResponseSection

A segment that an agent can return to render json and ui schema in react-jsonschema-form format for workflow nodes. This is primarily used to generate dynamic forms at runtime. If a node returns a runtime schema variable, the UI will render the form upon node execution.

Parameters:
  • json_schema (dict) – json schema in RJSF format.

  • ui_schema (dict) – ui schema in RJSF format.

  • schema_prop (str)

json_schema: dict
ui_schema: dict
class abacusai.api_class.CodeResponseSection(code, language, section_key=None)

Bases: ResponseSection

A response section that an agent can return to render code.

Parameters:
  • code (str) – The code to be displayed.

  • language (CodeLanguage) – The language of the code.

  • section_key (str)

code: str
language: abacusai.api_class.enums.CodeLanguage
class abacusai.api_class.Base64ImageResponseSection(b64_image, section_key=None)

Bases: ResponseSection

A response section that an agent can return to render a base64 image.

Parameters:
  • b64_image (str) – The base64 image to be displayed.

  • section_key (str)

b64_image: str
class abacusai.api_class.CollapseResponseSection(title, content, section_key=None)

Bases: ResponseSection

A response section that an agent can return to render a collapsible component.

Parameters:
  • title (str) – The title of the collapsible component.

  • content (ResponseSection) – The response section constituting the content of collapsible component

  • section_key (str)

title: str
content: ResponseSection
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.

class abacusai.api_class.ListResponseSection(items, section_key=None)

Bases: ResponseSection

A response section that an agent can return to render a list.

Parameters:
  • items (List[str]) – The list items to be displayed.

  • section_key (str)

items: List[str]
class abacusai.api_class.ChartResponseSection(chart, section_key=None)

Bases: ResponseSection

A response section that an agent can return to render a chart.

Parameters:
  • chart (dict) – The chart to be displayed.

  • section_key (str)

chart: dict
class abacusai.api_class.DataframeResponseSection(df, header=None, section_key=None)

Bases: ResponseSection

A response section that an agent can return to render a pandas dataframe. :param df: The dataframe to be displayed. :type df: pandas.DataFrame :param header: Heading of the table to be displayed. :type header: str

Parameters:
  • df (Any)

  • header (str)

  • section_key (str)

df: Any
header: str