abacusai.algorithm

Classes

Algorithm

Customer created algorithm

Module Contents

class abacusai.algorithm.Algorithm(client, name=None, problemType=None, createdAt=None, updatedAt=None, isDefaultEnabled=None, trainingInputMappings=None, trainFunctionName=None, predictFunctionName=None, predictManyFunctionName=None, initializeFunctionName=None, configOptions=None, algorithmId=None, useGpu=None, algorithmTrainingConfig=None, onlyOfflineDeployable=None, codeSource={})

Bases: abacusai.return_class.AbstractApiClass

Customer created algorithm

Parameters:
  • client (ApiClient) – An authenticated API Client instance

  • name (str) – The name of the algorithm

  • problemType (str) – The type of the problem this algorithm will work on

  • createdAt (str) – When the algorithm was created

  • updatedAt (str) – When the algorithm was last updated

  • isDefaultEnabled (bool) – Whether train with the algorithm by default

  • trainingInputMappings (dict) – The mappings for train function parameters’ names, e.g. names for training data, name for training config

  • trainFunctionName (str) – Name of the function found in the source code that will be executed to train the model. It is not executed when this function is run.

  • predictFunctionName (str) – Name of the function found in the source code that will be executed run predictions through model. It is not executed when this function is run.

  • predictManyFunctionName (str) – Name of the function found in the source code that will be executed for batch prediction of the model. It is not executed when this function is run.

  • initializeFunctionName (str) – Name of the function found in the source code to initialize the trained model before using it to make predictions using the model

  • configOptions (dict) – Map dataset types and configs to train function parameter names

  • algorithmId (str) – The unique identifier of the algorithm

  • useGpu (bool) – Whether to use gpu for model training

  • algorithmTrainingConfig (dict) – The algorithm specific training config

  • onlyOfflineDeployable (bool) – Whether or not the algorithm is only allowed to be deployed offline

  • codeSource (CodeSource) – Info about the source code of the algorithm

name = None
problem_type = None
created_at = None
updated_at = None
is_default_enabled = None
training_input_mappings = None
train_function_name = None
predict_function_name = None
predict_many_function_name = None
initialize_function_name = None
config_options = None
algorithm_id = None
use_gpu = None
algorithm_training_config = None
only_offline_deployable = None
code_source
deprecated_keys
__repr__()
to_dict()

Get a dict representation of the parameters in this class

Returns:

The dict value representation of the class parameters

Return type:

dict