abacusai.api_class.monitor_alert

Classes

AlertConditionConfig

An abstract class for alert condition configs

AccuracyBelowThresholdConditionConfig

Accuracy Below Threshold Condition Config for Monitor Alerts

FeatureDriftConditionConfig

Feature Drift Condition Config for Monitor Alerts

TargetDriftConditionConfig

Target Drift Condition Config for Monitor Alerts

HistoryLengthDriftConditionConfig

History Length Drift Condition Config for Monitor Alerts

DataIntegrityViolationConditionConfig

Data Integrity Violation Condition Config for Monitor Alerts

BiasViolationConditionConfig

Bias Violation Condition Config for Monitor Alerts

PredictionCountConditionConfig

Deployment Prediction Condition Config for Deployment Alerts. By default we monitor if predictions made over a time window has reduced significantly.

_AlertConditionConfigFactory

Helper class that provides a standard way to create an ABC using

AlertActionConfig

An abstract class for alert action configs

EmailActionConfig

Email Action Config for Monitor Alerts

_AlertActionConfigFactory

Helper class that provides a standard way to create an ABC using

MonitorThresholdConfig

Monitor Threshold Config for Monitor Alerts

Module Contents

class abacusai.api_class.monitor_alert.AlertConditionConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for alert condition configs

alert_type: abacusai.api_class.enums.MonitorAlertType = None
classmethod _get_builder()
class abacusai.api_class.monitor_alert.AccuracyBelowThresholdConditionConfig

Bases: AlertConditionConfig

Accuracy Below Threshold Condition Config for Monitor Alerts

Parameters:

threshold (float) – Threshold for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

threshold: float = None
__post_init__()
class abacusai.api_class.monitor_alert.FeatureDriftConditionConfig

Bases: AlertConditionConfig

Feature Drift Condition Config for Monitor Alerts

Parameters:
  • feature_drift_type (FeatureDriftType) – Feature drift type to apply the threshold on to determine whether a column has drifted significantly enough to be a violation.

  • threshold (float) – Threshold for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

  • minimum_violations (int) – Number of columns that must exceed the specified threshold to trigger an alert.

  • feature_names (List[str]) – List of feature names to monitor for this alert.

feature_drift_type: abacusai.api_class.enums.FeatureDriftType = None
threshold: float = None
minimum_violations: int = None
feature_names: List[str] = None
__post_init__()
class abacusai.api_class.monitor_alert.TargetDriftConditionConfig

Bases: AlertConditionConfig

Target Drift Condition Config for Monitor Alerts

Parameters:
  • feature_drift_type (FeatureDriftType) – Target drift type to apply the threshold on to determine whether a column has drifted significantly enough to be a violation.

  • threshold (float) – Threshold for when to consider the target column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

feature_drift_type: abacusai.api_class.enums.FeatureDriftType = None
threshold: float = None
__post_init__()
class abacusai.api_class.monitor_alert.HistoryLengthDriftConditionConfig

Bases: AlertConditionConfig

History Length Drift Condition Config for Monitor Alerts

Parameters:
  • feature_drift_type (FeatureDriftType) – History length drift type to apply the threshold on to determine whether the history length has drifted significantly enough to be a violation.

  • threshold (float) – Threshold for when to consider the history length to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

feature_drift_type: abacusai.api_class.enums.FeatureDriftType = None
threshold: float = None
__post_init__()
class abacusai.api_class.monitor_alert.DataIntegrityViolationConditionConfig

Bases: AlertConditionConfig

Data Integrity Violation Condition Config for Monitor Alerts

Parameters:
  • data_integrity_type (DataIntegrityViolationType) – This option selects the data integrity violations to monitor for this alert.

  • minimum_violations (int) – Number of columns that must exceed the specified threshold to trigger an alert.

data_integrity_type: abacusai.api_class.enums.DataIntegrityViolationType = None
minimum_violations: int = None
__post_init__()
class abacusai.api_class.monitor_alert.BiasViolationConditionConfig

Bases: AlertConditionConfig

Bias Violation Condition Config for Monitor Alerts

Parameters:
  • bias_type (BiasType) – This option selects the bias metric to monitor for this alert.

  • threshold (float) – Threshold for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

  • minimum_violations (int) – Number of columns that must exceed the specified threshold to trigger an alert.

bias_type: abacusai.api_class.enums.BiasType = None
threshold: float = None
minimum_violations: int = None
__post_init__()
class abacusai.api_class.monitor_alert.PredictionCountConditionConfig

Bases: AlertConditionConfig

Deployment Prediction Condition Config for Deployment Alerts. By default we monitor if predictions made over a time window has reduced significantly. :param threshold: Threshold for when to consider to be a violation. Negative means alert on reduction, positive means alert on increase. :type threshold: float :param aggregation_window: Time window to aggregate the predictions over, e.g. 1h, 10m. Only h(hour), m(minute) and s(second) are supported. :type aggregation_window: str :param aggregation_type: Aggregation type to use for the aggregation window, e.g. sum, avg. :type aggregation_type: str

threshold: float = None
aggregation_window: str = None
aggregation_type: str = None
__post_init__()
class abacusai.api_class.monitor_alert._AlertConditionConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'alert_type'
config_class_key_value_camel_case = True
config_class_map
class abacusai.api_class.monitor_alert.AlertActionConfig

Bases: abacusai.api_class.abstract.ApiClass

An abstract class for alert action configs

action_type: abacusai.api_class.enums.AlertActionType = None
classmethod _get_builder()
class abacusai.api_class.monitor_alert.EmailActionConfig

Bases: AlertActionConfig

Email Action Config for Monitor Alerts

Parameters:
  • email_recipients (List[str]) – List of email addresses to send the alert to.

  • email_body (str) – Body of the email to send.

email_recipients: List[str] = None
email_body: str = None
__post_init__()
class abacusai.api_class.monitor_alert._AlertActionConfigFactory

Bases: abacusai.api_class.abstract._ApiClassFactory

Helper class that provides a standard way to create an ABC using inheritance.

config_abstract_class
config_class_key = 'action_type'
config_class_map
class abacusai.api_class.monitor_alert.MonitorThresholdConfig

Bases: abacusai.api_class.abstract.ApiClass

Monitor Threshold Config for Monitor Alerts

Parameters:
  • drift_type (FeatureDriftType) – Feature drift type to apply the threshold on to determine whether a column has drifted significantly enough to be a violation.

  • threshold_config (ThresholdConfigs) – Thresholds for when to consider a column to be in violation. The alert will only fire when the drift value is strictly greater than the threshold.

drift_type: abacusai.api_class.enums.FeatureDriftType = None
at_risk_threshold: float = None
severely_drifting_threshold: float = None
to_dict()

Standardizes converting an ApiClass to dictionary. Keys of response dictionary are converted to camel case. This also validates the fields ( type, value, etc ) received in the dictionary.