abacusai.prediction_operator
Classes
| A prediction operator. | 
Module Contents
- class abacusai.prediction_operator.PredictionOperator(client, name=None, predictionOperatorId=None, createdAt=None, updatedAt=None, projectId=None, predictFunctionName=None, sourceCode=None, initializeFunctionName=None, notebookId=None, memory=None, useGpu=None, featureGroupIds=None, featureGroupTableNames=None, codeSource={}, refreshSchedules={}, latestPredictionOperatorVersion={})
- Bases: - abacusai.return_class.AbstractApiClass- A prediction operator. - Parameters:
- client (ApiClient) – An authenticated API Client instance 
- name (str) – The name for the prediction operator. 
- predictionOperatorId (str) – The unique identifier of the prediction operator. 
- createdAt (str) – Date and time at which the prediction operator was created. 
- updatedAt (str) – Date and time at which the prediction operator was updated. 
- projectId (str) – The project this prediction operator belongs to. 
- predictFunctionName (str) – Name of the function found in the source code that will be executed to run predictions. 
- sourceCode (str) – Python code used to make the prediction operator. 
- initializeFunctionName (str) – Name of the optional initialize function found in the source code. This function will generate anything used by predictions, based on input feature groups. 
- notebookId (str) – The unique string identifier of the notebook used to create or edit the prediction operator. 
- memory (int) – Memory in GB specified for the prediction operator. 
- useGpu (bool) – Whether this prediction operator is using gpu. 
- featureGroupIds (list) – A list of Feature Group IDs used for initializing. 
- featureGroupTableNames (list) – A list of Feature Group table names used for initializing. 
- codeSource (CodeSource) – If a python model, information on the source code. 
- latestPredictionOperatorVersion (PredictionOperatorVersion) – The unique string identifier of the latest version. 
- refreshSchedules (RefreshSchedule) – List of refresh schedules that indicate when the next prediction operator version will be processed 
 
 - name = None
 - prediction_operator_id = None
 - created_at = None
 - updated_at = None
 - project_id = None
 - predict_function_name = None
 - source_code = None
 - initialize_function_name = None
 - notebook_id = None
 - memory = None
 - use_gpu = None
 - feature_group_ids = None
 - feature_group_table_names = None
 - code_source
 - refresh_schedules
 - latest_prediction_operator_version
 - deprecated_keys
 - __repr__()
 - to_dict()
- Get a dict representation of the parameters in this class - Returns:
- The dict value representation of the class parameters 
- Return type:
 
 - refresh()
- Calls describe and refreshes the current object’s fields - Returns:
- The current object 
- Return type:
 
 - describe()
- Describe an existing prediction operator. - Parameters:
- prediction_operator_id (str) – The unique ID of the prediction operator. 
- Returns:
- The requested prediction operator object. 
- Return type:
 
 - update(name=None, feature_group_ids=None, source_code=None, initialize_function_name=None, predict_function_name=None, cpu_size=None, memory=None, package_requirements=None, use_gpu=None)
- Update an existing prediction operator. This does not create a new version. - Parameters:
- name (str) – Name of the prediction operator. 
- feature_group_ids (List) – List of feature groups that are supplied to the initialize function as parameters. Each of the parameters are materialized Dataframes. The order should match the initialize function’s parameters. 
- source_code (str) – Contents of a valid Python source code file. The source code should contain the function predictFunctionName, and the function ‘initializeFunctionName’ if defined. 
- initialize_function_name (str) – Name of the optional initialize function found in the source code. This function will generate anything used by predictions, based on input feature groups. 
- predict_function_name (str) – Name of the function found in the source code that will be executed to run predictions. 
- cpu_size (str) – Size of the CPU for the prediction operator. 
- memory (int) – Memory (in GB) for the prediction operator. 
- package_requirements (list) – List of package requirement strings. For example: [‘numpy==1.2.3’, ‘pandas>=1.4.0’] 
- use_gpu (bool) – Whether this prediction operator needs gpu. 
 
- Returns:
- The updated prediction operator object. 
- Return type:
 
 - delete()
- Delete an existing prediction operator. - Parameters:
- prediction_operator_id (str) – The unique ID of the prediction operator. 
 
 - deploy(auto_deploy=True)
- Deploy the prediction operator. - Parameters:
- auto_deploy (bool) – Flag to enable the automatic deployment when a new prediction operator version is created. 
- Returns:
- The created deployment object. 
- Return type:
 
 - create_version()
- Create a new version of the prediction operator. - Parameters:
- prediction_operator_id (str) – The unique ID of the prediction operator. 
- Returns:
- The created prediction operator version object. 
- Return type: