abacusai.prediction_operator
Classes
A prediction operator. |
Module Contents
- class abacusai.prediction_operator.PredictionOperator(client, name=None, predictionOperatorId=None, createdAt=None, updatedAt=None, projectId=None, predictFunctionName=None, sourceCode=None, initializeFunctionName=None, notebookId=None, memory=None, useGpu=None, featureGroupIds=None, featureGroupTableNames=None, codeSource={}, refreshSchedules={}, latestPredictionOperatorVersion={})
Bases:
abacusai.return_class.AbstractApiClass
A prediction operator.
- Parameters:
client (ApiClient) – An authenticated API Client instance
name (str) – The name for the prediction operator.
predictionOperatorId (str) – The unique identifier of the prediction operator.
createdAt (str) – Date and time at which the prediction operator was created.
updatedAt (str) – Date and time at which the prediction operator was updated.
projectId (str) – The project this prediction operator belongs to.
predictFunctionName (str) – Name of the function found in the source code that will be executed to run predictions.
sourceCode (str) – Python code used to make the prediction operator.
initializeFunctionName (str) – Name of the optional initialize function found in the source code. This function will generate anything used by predictions, based on input feature groups.
notebookId (str) – The unique string identifier of the notebook used to create or edit the prediction operator.
memory (int) – Memory in GB specified for the prediction operator.
useGpu (bool) – Whether this prediction operator is using gpu.
featureGroupIds (list) – A list of Feature Group IDs used for initializing.
featureGroupTableNames (list) – A list of Feature Group table names used for initializing.
codeSource (CodeSource) – If a python model, information on the source code.
latestPredictionOperatorVersion (PredictionOperatorVersion) – The unique string identifier of the latest version.
refreshSchedules (RefreshSchedule) – List of refresh schedules that indicate when the next prediction operator version will be processed
- name
- prediction_operator_id
- created_at
- updated_at
- project_id
- predict_function_name
- source_code
- initialize_function_name
- notebook_id
- memory
- use_gpu
- feature_group_ids
- feature_group_table_names
- code_source
- refresh_schedules
- latest_prediction_operator_version
- deprecated_keys
- __repr__()
- to_dict()
Get a dict representation of the parameters in this class
- Returns:
The dict value representation of the class parameters
- Return type:
- refresh()
Calls describe and refreshes the current object’s fields
- Returns:
The current object
- Return type:
- describe()
Describe an existing prediction operator.
- Parameters:
prediction_operator_id (str) – The unique ID of the prediction operator.
- Returns:
The requested prediction operator object.
- Return type:
- update(name=None, feature_group_ids=None, source_code=None, initialize_function_name=None, predict_function_name=None, cpu_size=None, memory=None, package_requirements=None, use_gpu=None)
Update an existing prediction operator. This does not create a new version.
- Parameters:
name (str) – Name of the prediction operator.
feature_group_ids (List) – List of feature groups that are supplied to the initialize function as parameters. Each of the parameters are materialized Dataframes. The order should match the initialize function’s parameters.
source_code (str) – Contents of a valid Python source code file. The source code should contain the function predictFunctionName, and the function ‘initializeFunctionName’ if defined.
initialize_function_name (str) – Name of the optional initialize function found in the source code. This function will generate anything used by predictions, based on input feature groups.
predict_function_name (str) – Name of the function found in the source code that will be executed to run predictions.
cpu_size (str) – Size of the CPU for the prediction operator.
memory (int) – Memory (in GB) for the prediction operator.
package_requirements (list) – List of package requirement strings. For example: [‘numpy==1.2.3’, ‘pandas>=1.4.0’]
use_gpu (bool) – Whether this prediction operator needs gpu.
- Returns:
The updated prediction operator object.
- Return type:
- delete()
Delete an existing prediction operator.
- Parameters:
prediction_operator_id (str) – The unique ID of the prediction operator.
- deploy(auto_deploy=True)
Deploy the prediction operator.
- Parameters:
auto_deploy (bool) – Flag to enable the automatic deployment when a new prediction operator version is created.
- Returns:
The created deployment object.
- Return type:
- create_version()
Create a new version of the prediction operator.
- Parameters:
prediction_operator_id (str) – The unique ID of the prediction operator.
- Returns:
The created prediction operator version object.
- Return type: