abacusai.batch_prediction
Classes
Make batch predictions. |
Module Contents
- class abacusai.batch_prediction.BatchPrediction(client, batchPredictionId=None, createdAt=None, name=None, deploymentId=None, fileConnectorOutputLocation=None, databaseConnectorId=None, databaseOutputConfiguration=None, fileOutputFormat=None, connectorType=None, legacyInputLocation=None, outputFeatureGroupId=None, featureGroupTableName=None, outputFeatureGroupTableName=None, summaryFeatureGroupTableName=None, csvInputPrefix=None, csvPredictionPrefix=None, csvExplanationsPrefix=None, outputIncludesMetadata=None, resultInputColumns=None, modelMonitorId=None, modelVersion=None, bpAcrossVersionsMonitorId=None, algorithm=None, batchPredictionArgsType=None, batchInputs={}, latestBatchPredictionVersion={}, refreshSchedules={}, inputFeatureGroups={}, globalPredictionArgs={}, batchPredictionArgs={})
Bases:
abacusai.return_class.AbstractApiClass
Make batch predictions.
- Parameters:
client (ApiClient) – An authenticated API Client instance
batchPredictionId (str) – The unique identifier of the batch prediction request.
createdAt (str) – When the batch prediction was created, in ISO-8601 format.
name (str) – Name given to the batch prediction object.
deploymentId (str) – The deployment used to make the predictions.
fileConnectorOutputLocation (str) – Contains information about where the batch predictions are written to.
databaseConnectorId (str) – The database connector to write the results to.
databaseOutputConfiguration (dict) – Contains information about where the batch predictions are written to.
fileOutputFormat (str) – The format of the batch prediction output (CSV or JSON).
connectorType (str) – Null if writing to internal console, else FEATURE_GROUP | FILE_CONNECTOR | DATABASE_CONNECTOR.
legacyInputLocation (str) – The location of the input data.
outputFeatureGroupId (str) – The Batch Prediction output feature group ID if applicable
featureGroupTableName (str) – The table name of the Batch Prediction output feature group.
outputFeatureGroupTableName (str) – The table name of the Batch Prediction output feature group.
summaryFeatureGroupTableName (str) – The table name of the metrics summary feature group output by Batch Prediction.
csvInputPrefix (str) – A prefix to prepend to the input columns, only applies when output format is CSV.
csvPredictionPrefix (str) – A prefix to prepend to the prediction columns, only applies when output format is CSV.
csvExplanationsPrefix (str) – A prefix to prepend to the explanation columns, only applies when output format is CSV.
outputIncludesMetadata (bool) – If true, output will contain columns including prediction start time, batch prediction version, and model version.
resultInputColumns (list) – If present, will limit result files or feature groups to only include columns present in this list.
modelMonitorId (str) – The model monitor for this batch prediction.
modelVersion (str) – The model instance used in the deployment for the batch prediction.
bpAcrossVersionsMonitorId (str) – The model monitor for this batch prediction across versions.
algorithm (str) – The algorithm that is currently deployed.
batchPredictionArgsType (str) – The type of batch prediction arguments used for this batch prediction.
batchInputs (PredictionInput) – Inputs to the batch prediction.
latestBatchPredictionVersion (BatchPredictionVersion) – The latest batch prediction version.
refreshSchedules (RefreshSchedule) – List of refresh schedules that dictate the next time the batch prediction will be run.
inputFeatureGroups (PredictionFeatureGroup) – List of prediction feature groups.
globalPredictionArgs (BatchPredictionArgs)
batchPredictionArgs (BatchPredictionArgs) – Argument(s) passed to every prediction call.
- batch_prediction_id
- created_at
- name
- deployment_id
- file_connector_output_location
- database_connector_id
- database_output_configuration
- file_output_format
- connector_type
- legacy_input_location
- output_feature_group_id
- feature_group_table_name
- output_feature_group_table_name
- summary_feature_group_table_name
- csv_input_prefix
- csv_prediction_prefix
- csv_explanations_prefix
- output_includes_metadata
- result_input_columns
- model_monitor_id
- model_version
- bp_across_versions_monitor_id
- algorithm
- batch_prediction_args_type
- batch_inputs
- latest_batch_prediction_version
- refresh_schedules
- input_feature_groups
- global_prediction_args
- batch_prediction_args
- deprecated_keys
- __repr__()
- to_dict()
Get a dict representation of the parameters in this class
- Returns:
The dict value representation of the class parameters
- Return type:
- start()
Creates a new batch prediction version job for a given batch prediction job description.
- Parameters:
batch_prediction_id (str) – The unique identifier of the batch prediction to create a new version of.
- Returns:
The batch prediction version started by this method call.
- Return type:
- refresh()
Calls describe and refreshes the current object’s fields
- Returns:
The current object
- Return type:
- describe()
Describe the batch prediction.
- Parameters:
batch_prediction_id (str) – The unique identifier associated with the batch prediction.
- Returns:
The batch prediction description.
- Return type:
- list_versions(limit=100, start_after_version=None)
Retrieves a list of versions of a given batch prediction
- Parameters:
- Returns:
List of batch prediction versions.
- Return type:
- update(deployment_id=None, global_prediction_args=None, batch_prediction_args=None, explanations=None, output_format=None, csv_input_prefix=None, csv_prediction_prefix=None, csv_explanations_prefix=None, output_includes_metadata=None, result_input_columns=None, name=None)
Update a batch prediction job description.
- Parameters:
deployment_id (str) – Unique identifier of the deployment.
batch_prediction_args (BatchPredictionArgs) – Batch Prediction args specific to problem type.
output_format (str) – If specified, sets the format of the batch prediction output (CSV or JSON).
csv_input_prefix (str) – Prefix to prepend to the input columns, only applies when output format is CSV.
csv_prediction_prefix (str) – Prefix to prepend to the prediction columns, only applies when output format is CSV.
csv_explanations_prefix (str) – Prefix to prepend to the explanation columns, only applies when output format is CSV.
output_includes_metadata (bool) – If True, output will contain columns including prediction start time, batch prediction version, and model version.
result_input_columns (list) – If present, will limit result files or feature groups to only include columns present in this list.
name (str) – If present, will rename the batch prediction.
global_prediction_args (Union[dict, abacusai.api_class.BatchPredictionArgs])
explanations (bool)
- Returns:
The batch prediction.
- Return type:
- set_file_connector_output(output_format=None, output_location=None)
Updates the file connector output configuration of the batch prediction
- Parameters:
- Returns:
The batch prediction description.
- Return type:
- set_database_connector_output(database_connector_id=None, database_output_config=None)
Updates the database connector output configuration of the batch prediction
- Parameters:
- Returns:
Description of the batch prediction.
- Return type:
- set_feature_group_output(table_name)
Creates a feature group and sets it as the batch prediction output.
- Parameters:
table_name (str) – Name of the feature group table to create.
- Returns:
Batch prediction after the output has been applied.
- Return type:
- set_output_to_console()
Sets the batch prediction output to the console, clearing both the file connector and database connector configurations.
- Parameters:
batch_prediction_id (str) – The unique identifier of the batch prediction.
- Returns:
The batch prediction description.
- Return type:
- set_feature_group(feature_group_type, feature_group_id=None)
Sets the batch prediction input feature group.
- Parameters:
feature_group_type (str) – Enum string representing the feature group type to set. The type is based on the use case under which the feature group is being created (e.g. Catalog Attributes for personalized recommendation use case).
feature_group_id (str) – Unique identifier of the feature group to set as input to the batch prediction.
- Returns:
Description of the batch prediction.
- Return type:
- set_dataset_remap(dataset_id_remap)
For the purpose of this batch prediction, will swap out datasets in the training feature groups
- Parameters:
dataset_id_remap (dict) – Key/value pairs of dataset ids to be replaced during the batch prediction.
- Returns:
Batch prediction object.
- Return type:
- delete()
Deletes a batch prediction and associated data, such as associated monitors.
- Parameters:
batch_prediction_id (str) – Unique string identifier of the batch prediction.
- wait_for_predictions(timeout=86400)
A waiting call until batch predictions are ready.
- Parameters:
timeout (int) – The waiting time given to the call to finish, if it doesn’t finish by the allocated time, the call is said to be timed out.
- wait_for_drift_monitor(timeout=86400)
A waiting call until batch prediction drift monitor calculations are ready.
- Parameters:
timeout (int) – The waiting time given to the call to finish, if it doesn’t finish by the allocated time, the call is said to be timed out.
- get_status()
Gets the status of the latest batch prediction version.
- Returns:
A string describing the status of the latest batch prediction version e.g., pending, complete, etc.
- Return type:
- create_refresh_policy(cron)
To create a refresh policy for a batch prediction.
- Parameters:
cron (str) – A cron style string to set the refresh time.
- Returns:
The refresh policy object.
- Return type:
- list_refresh_policies()
Gets the refresh policies in a list.
- Returns:
A list of refresh policy objects.
- Return type:
List[RefreshPolicy]
- describe_output_feature_group()
Gets the results feature group for this batch prediction
- Returns:
A feature group object.
- Return type:
- load_results_as_pandas()
Loads the output feature groups into a python pandas dataframe.
- Returns:
A pandas dataframe with annotations and text_snippet columns.
- Return type:
DataFrame