abacusai.model_monitor

Classes

ModelMonitor

A model monitor

Module Contents

class abacusai.model_monitor.ModelMonitor(client, modelMonitorId=None, name=None, createdAt=None, projectId=None, trainingFeatureGroupId=None, predictionFeatureGroupId=None, predictionFeatureGroupVersion=None, trainingFeatureGroupVersion=None, alertConfig=None, biasMetricId=None, metricConfigs=None, featureGroupMonitorConfigs=None, metricTypes=None, modelId=None, starred=None, batchPredictionId=None, monitorType=None, edaConfigs=None, trainingForecastConfig=None, predictionForecastConfig=None, forecastFrequency=None, trainingFeatureGroupSampling=None, predictionFeatureGroupSampling=None, monitorDriftConfig=None, predictionDataUseMappings=None, trainingDataUseMappings=None, refreshSchedules={}, latestMonitorModelVersion={})

Bases: abacusai.return_class.AbstractApiClass

A model monitor

Parameters:
  • client (ApiClient) – An authenticated API Client instance

  • modelMonitorId (str) – The unique identifier of the model monitor.

  • name (str) – The user-friendly name for the model monitor.

  • createdAt (str) – Date and time at which the model was created.

  • projectId (str) – The project this model belongs to.

  • trainingFeatureGroupId (list[str]) – Feature group IDs that this model monitor is monitoring.

  • predictionFeatureGroupId (list[str]) – Feature group IDs that this model monitor is monitoring.

  • predictionFeatureGroupVersion (list[str]) – Feature group versions that this model monitor is monitoring.

  • trainingFeatureGroupVersion (list[str]) – Feature group versions that this model monitor is monitoring.

  • alertConfig (dict) – Alerting configuration for this model monitor.

  • biasMetricId (str) – The bias metric ID

  • metricConfigs (dict) – Configurations for model monitor

  • featureGroupMonitorConfigs (dict) – Configurations for feature group monitor

  • metricTypes (dict) – List of metric types

  • modelId (str) – Model ID that this model monitor is monitoring.

  • starred (bool) – Whether this model monitor is starred.

  • batchPredictionId (str) – The batch prediction ID this model monitor monitors

  • monitorType (str) – The type of the monitor, one of MODEL_MONITOR, or FEATURE_GROUP_MONITOR

  • edaConfigs (dict) – The configs for EDA

  • trainingForecastConfig (dict) – The tarining config for forecast monitors

  • predictionForecastConfig (dict) – The prediction config for forecast monitors

  • forecastFrequency (str) – The frequency of the forecast

  • trainingFeatureGroupSampling (bool) – Whether or not we sample from training feature group

  • predictionFeatureGroupSampling (bool) – Whether or not we sample from prediction feature group

  • monitorDriftConfig (dict) – The monitor drift config for the monitor

  • predictionDataUseMappings (dict) – The data_use mapping of the prediction features

  • trainingDataUseMappings (dict) – The data_use mapping of the training features

  • latestMonitorModelVersion (ModelMonitorVersion) – The latest model monitor version.

  • refreshSchedules (RefreshSchedule) – List of refresh schedules that indicate when the next model version will be trained.

model_monitor_id = None
name = None
created_at = None
project_id = None
training_feature_group_id = None
prediction_feature_group_id = None
prediction_feature_group_version = None
training_feature_group_version = None
alert_config = None
bias_metric_id = None
metric_configs = None
feature_group_monitor_configs = None
metric_types = None
model_id = None
starred = None
batch_prediction_id = None
monitor_type = None
eda_configs = None
training_forecast_config = None
prediction_forecast_config = None
forecast_frequency = None
training_feature_group_sampling = None
prediction_feature_group_sampling = None
monitor_drift_config = None
prediction_data_use_mappings = None
training_data_use_mappings = None
refresh_schedules
latest_monitor_model_version
deprecated_keys
__repr__()
to_dict()

Get a dict representation of the parameters in this class

Returns:

The dict value representation of the class parameters

Return type:

dict

rerun()

Re-runs the specified model monitor.

Parameters:

model_monitor_id (str) – Unique string identifier of the model monitor to re-run.

Returns:

The model monitor that is being re-run.

Return type:

ModelMonitor

refresh()

Calls describe and refreshes the current object’s fields

Returns:

The current object

Return type:

ModelMonitor

describe()

Retrieves a full description of the specified model monitor.

Parameters:

model_monitor_id (str) – Unique string identifier associated with the model monitor.

Returns:

Description of the model monitor.

Return type:

ModelMonitor

get_summary()

Gets the summary of a model monitor across versions.

Parameters:

model_monitor_id (str) – A unique string identifier associated with the model monitor.

Returns:

An object describing integrity, bias violations, model accuracy and drift for the model monitor.

Return type:

ModelMonitorSummary

list_versions(limit=100, start_after_version=None)

Retrieves a list of versions for a given model monitor.

Parameters:
  • limit (int) – The maximum length of the list of all model monitor versions.

  • start_after_version (str) – The ID of the version after which the list starts.

Returns:

A list of model monitor versions.

Return type:

list[ModelMonitorVersion]

rename(name)

Renames a model monitor

Parameters:

name (str) – The new name to apply to the model monitor.

delete()

Deletes the specified Model Monitor and all its versions.

Parameters:

model_monitor_id (str) – Unique identifier of the Model Monitor to delete.

list_monitor_alerts_for_monitor(realtime_monitor_id=None)

Retrieves the list of monitor alerts for a specified monitor. One of the model_monitor_id or realtime_monitor_id is required but not both.

Parameters:

realtime_monitor_id (str) – The unique ID associated with the real-time monitor.

Returns:

A list of monitor alerts.

Return type:

list[MonitorAlert]