abacusai.api_class.document_retriever
Attributes
Classes
Config for indexing options of a document retriever. Default values of optional arguments are heuristically selected by the Abacus.AI platform based on the underlying data. |
Module Contents
- class abacusai.api_class.document_retriever.VectorStoreConfig
Bases:
abacusai.api_class.abstract.ApiClass
Config for indexing options of a document retriever. Default values of optional arguments are heuristically selected by the Abacus.AI platform based on the underlying data.
- Parameters:
chunk_size (int) – The size of text chunks in the vector store.
chunk_overlap_fraction (float) – The fraction of overlap between chunks.
text_encoder (VectorStoreTextEncoder) – Encoder used to index texts from the documents.
chunk_size_factors (list) – Chunking data with multiple sizes. The specified list of factors are used to calculate more sizes, in addition to chunk_size.
score_multiplier_column (str) – If provided, will use the values in this metadata column to modify the relevance score of returned chunks for all queries.
prune_vectors (bool) – Transform vectors using SVD so that the average component of vectors in the corpus are removed.
index_metadata_columns (bool) – If True, metadata columns of the FG will also be used for indexing and querying.
use_document_summary (bool) – If True, uses the summary of the document in addition to chunks of the document for indexing and querying.
summary_instructions (str) – Instructions for the LLM to generate the document summary.
- text_encoder: abacusai.api_class.enums.VectorStoreTextEncoder
- abacusai.api_class.document_retriever.DocumentRetrieverConfig