abacusai.document_retriever_config

Classes

DocumentRetrieverConfig

A config for document retriever creation.

Module Contents

class abacusai.document_retriever_config.DocumentRetrieverConfig(client, chunkSize=None, chunkOverlapFraction=None, textEncoder=None, scoreMultiplierColumn=None, pruneVectors=None, indexMetadataColumns=None, useDocumentSummary=None, summaryInstructions=None)

Bases: abacusai.return_class.AbstractApiClass

A config for document retriever creation.

Parameters:
  • client (ApiClient) – An authenticated API Client instance

  • chunkSize (int) – The size of chunks for vector store, i.e., maximum number of words in the chunk.

  • chunkOverlapFraction (float) – The fraction of overlap between two consecutive chunks.

  • textEncoder (str) – The text encoder used to encode texts in the vector store.

  • scoreMultiplierColumn (str) – The values in this metadata column are used to modify the relevance scores of returned chunks.

  • pruneVectors (bool) – Corpus specific transformation of vectors that applies dimensional reduction techniques to strip common components from the vectors.

  • indexMetadataColumns (bool) – If True, metadata columns of the FG will also be used for indexing and querying.

  • useDocumentSummary (bool) – If True, uses the summary of the document in addition to chunks of the document for indexing and querying.

  • summaryInstructions (str) – Instructions for the LLM to generate the document summary.

chunk_size
chunk_overlap_fraction
text_encoder
score_multiplier_column
prune_vectors
index_metadata_columns
use_document_summary
summary_instructions
deprecated_keys
__repr__()
to_dict()

Get a dict representation of the parameters in this class

Returns:

The dict value representation of the class parameters

Return type:

dict