abacusai.algorithm ================== .. py:module:: abacusai.algorithm Classes ------- .. autoapisummary:: abacusai.algorithm.Algorithm Module Contents --------------- .. py:class:: Algorithm(client, name=None, problemType=None, createdAt=None, updatedAt=None, isDefaultEnabled=None, trainingInputMappings=None, trainFunctionName=None, predictFunctionName=None, predictManyFunctionName=None, initializeFunctionName=None, configOptions=None, algorithmId=None, useGpu=None, algorithmTrainingConfig=None, onlyOfflineDeployable=None, codeSource={}) Bases: :py:obj:`abacusai.return_class.AbstractApiClass` Customer created algorithm :param client: An authenticated API Client instance :type client: ApiClient :param name: The name of the algorithm :type name: str :param problemType: The type of the problem this algorithm will work on :type problemType: str :param createdAt: When the algorithm was created :type createdAt: str :param updatedAt: When the algorithm was last updated :type updatedAt: str :param isDefaultEnabled: Whether train with the algorithm by default :type isDefaultEnabled: bool :param trainingInputMappings: The mappings for train function parameters' names, e.g. names for training data, name for training config :type trainingInputMappings: dict :param trainFunctionName: Name of the function found in the source code that will be executed to train the model. It is not executed when this function is run. :type trainFunctionName: str :param predictFunctionName: Name of the function found in the source code that will be executed run predictions through model. It is not executed when this function is run. :type predictFunctionName: str :param predictManyFunctionName: Name of the function found in the source code that will be executed for batch prediction of the model. It is not executed when this function is run. :type predictManyFunctionName: str :param initializeFunctionName: Name of the function found in the source code to initialize the trained model before using it to make predictions using the model :type initializeFunctionName: str :param configOptions: Map dataset types and configs to train function parameter names :type configOptions: dict :param algorithmId: The unique identifier of the algorithm :type algorithmId: str :param useGpu: Whether to use gpu for model training :type useGpu: bool :param algorithmTrainingConfig: The algorithm specific training config :type algorithmTrainingConfig: dict :param onlyOfflineDeployable: Whether or not the algorithm is only allowed to be deployed offline :type onlyOfflineDeployable: bool :param codeSource: Info about the source code of the algorithm :type codeSource: CodeSource .. py:attribute:: name :value: None .. py:attribute:: problem_type :value: None .. py:attribute:: created_at :value: None .. py:attribute:: updated_at :value: None .. py:attribute:: is_default_enabled :value: None .. py:attribute:: training_input_mappings :value: None .. py:attribute:: train_function_name :value: None .. py:attribute:: predict_function_name :value: None .. py:attribute:: predict_many_function_name :value: None .. py:attribute:: initialize_function_name :value: None .. py:attribute:: config_options :value: None .. py:attribute:: algorithm_id :value: None .. py:attribute:: use_gpu :value: None .. py:attribute:: algorithm_training_config :value: None .. py:attribute:: only_offline_deployable :value: None .. py:attribute:: code_source .. py:attribute:: deprecated_keys .. py:method:: __repr__() .. py:method:: to_dict() Get a dict representation of the parameters in this class :returns: The dict value representation of the class parameters :rtype: dict