abacusai.refresh_pipeline_run ============================= .. py:module:: abacusai.refresh_pipeline_run Classes ------- .. autoapisummary:: abacusai.refresh_pipeline_run.RefreshPipelineRun Module Contents --------------- .. py:class:: RefreshPipelineRun(client, refreshPipelineRunId=None, refreshPolicyId=None, createdAt=None, startedAt=None, completedAt=None, status=None, refreshType=None, datasetVersions=None, featureGroupVersion=None, modelVersions=None, deploymentVersions=None, batchPredictions=None, refreshPolicy={}) Bases: :py:obj:`abacusai.return_class.AbstractApiClass` This keeps track of the overall status of a refresh. A refresh can span multiple resources such as the creation of new dataset versions and the training of a new model version based on them. :param client: An authenticated API Client instance :type client: ApiClient :param refreshPipelineRunId: The unique identifier for the refresh pipeline run. :type refreshPipelineRunId: str :param refreshPolicyId: Populated when the run was triggered by a refresh policy. :type refreshPolicyId: str :param createdAt: The time when this refresh pipeline run was created, in ISO-8601 format. :type createdAt: str :param startedAt: The time when the refresh pipeline run was started, in ISO-8601 format. :type startedAt: str :param completedAt: The time when the refresh pipeline run was completed, in ISO-8601 format. :type completedAt: str :param status: The status of the refresh pipeline run. :type status: str :param refreshType: The type of refresh policy to be run. :type refreshType: str :param datasetVersions: A list of dataset version IDs that this refresh pipeline run is monitoring. :type datasetVersions: list[str] :param featureGroupVersion: The feature group version ID that this refresh pipeline run is monitoring. :type featureGroupVersion: str :param modelVersions: A list of model version IDs that this refresh pipeline run is monitoring. :type modelVersions: list[str] :param deploymentVersions: A list of deployment version IDs that this refresh pipeline run is monitoring. :type deploymentVersions: list[str] :param batchPredictions: A list of batch prediction IDs that this refresh pipeline run is monitoring. :type batchPredictions: list[str] :param refreshPolicy: The refresh policy for this refresh policy run. :type refreshPolicy: RefreshPolicy .. py:attribute:: refresh_pipeline_run_id :value: None .. py:attribute:: refresh_policy_id :value: None .. py:attribute:: created_at :value: None .. py:attribute:: started_at :value: None .. py:attribute:: completed_at :value: None .. py:attribute:: status :value: None .. py:attribute:: refresh_type :value: None .. py:attribute:: dataset_versions :value: None .. py:attribute:: feature_group_version :value: None .. py:attribute:: model_versions :value: None .. py:attribute:: deployment_versions :value: None .. py:attribute:: batch_predictions :value: None .. py:attribute:: refresh_policy .. py:attribute:: deprecated_keys .. py:method:: __repr__() .. py:method:: to_dict() Get a dict representation of the parameters in this class :returns: The dict value representation of the class parameters :rtype: dict .. py:method:: refresh() Calls describe and refreshes the current object's fields :returns: The current object :rtype: RefreshPipelineRun .. py:method:: describe() Retrieve a single refresh pipeline run :param refresh_pipeline_run_id: Unique string identifier associated with the refresh pipeline run. :type refresh_pipeline_run_id: str :returns: A refresh pipeline run object. :rtype: RefreshPipelineRun .. py:method:: wait_for_complete(timeout=None) A waiting call until refresh pipeline run has completed. :param timeout: The waiting time given to the call to finish, if it doesn't finish by the allocated time, the call is said to be timed out. :type timeout: int .. py:method:: get_status() Gets the status of the refresh pipeline run. :returns: A string describing the status of a refresh pipeline run (pending, complete, etc.). :rtype: str