abacusai.model_monitor_version ============================== .. py:module:: abacusai.model_monitor_version Classes ------- .. autoapisummary:: abacusai.model_monitor_version.ModelMonitorVersion Module Contents --------------- .. py:class:: ModelMonitorVersion(client, modelMonitorVersion=None, status=None, modelMonitorId=None, monitoringStartedAt=None, monitoringCompletedAt=None, trainingFeatureGroupVersion=None, predictionFeatureGroupVersion=None, error=None, pendingDeploymentIds=None, failedDeploymentIds=None, metricConfigs=None, featureGroupMonitorConfigs=None, metricTypes=None, modelVersion=None, batchPredictionVersion=None, edaConfigs=None, trainingForecastConfig=None, predictionForecastConfig=None, forecastFrequency=None, monitorDriftConfig=None, predictionDataUseMappings=None, trainingDataUseMappings=None) Bases: :py:obj:`abacusai.return_class.AbstractApiClass` A version of a model monitor :param client: An authenticated API Client instance :type client: ApiClient :param modelMonitorVersion: The unique identifier of a model monitor version. :type modelMonitorVersion: str :param status: The current status of the model. :type status: str :param modelMonitorId: A reference to the model monitor this version belongs to. :type modelMonitorId: str :param monitoringStartedAt: The start time and date of the monitoring process. :type monitoringStartedAt: str :param monitoringCompletedAt: The end time and date of the monitoring process. :type monitoringCompletedAt: str :param trainingFeatureGroupVersion: Feature group version IDs that this refresh pipeline run is monitoring. :type trainingFeatureGroupVersion: list[str] :param predictionFeatureGroupVersion: Feature group version IDs that this refresh pipeline run is monitoring. :type predictionFeatureGroupVersion: list[str] :param error: Relevant error if the status is FAILED. :type error: str :param pendingDeploymentIds: List of deployment IDs where deployment is pending. :type pendingDeploymentIds: list :param failedDeploymentIds: List of failed deployment IDs. :type failedDeploymentIds: list :param metricConfigs: List of metric configs for the model monitor instance. :type metricConfigs: list[dict] :param featureGroupMonitorConfigs: Configurations for feature group monitor :type featureGroupMonitorConfigs: dict :param metricTypes: List of metric types. :type metricTypes: list :param modelVersion: Model version IDs that this refresh pipeline run is monitoring. :type modelVersion: list[str] :param batchPredictionVersion: The batch prediction version this model monitor is monitoring :type batchPredictionVersion: str :param edaConfigs: The list of eda configs for the version :type edaConfigs: list :param trainingForecastConfig: The training forecast config for the monitor version :type trainingForecastConfig: dict :param predictionForecastConfig: The prediction forecast config for the monitor version :type predictionForecastConfig: dict :param forecastFrequency: The forecast frequency for the monitor version :type forecastFrequency: str :param monitorDriftConfig: The monitor drift config for the monitor version :type monitorDriftConfig: dict :param predictionDataUseMappings: The mapping of prediction data use to feature group version :type predictionDataUseMappings: dict :param trainingDataUseMappings: The mapping of training data use to feature group version :type trainingDataUseMappings: dict .. py:attribute:: model_monitor_version :value: None .. py:attribute:: status :value: None .. py:attribute:: model_monitor_id :value: None .. py:attribute:: monitoring_started_at :value: None .. py:attribute:: monitoring_completed_at :value: None .. py:attribute:: training_feature_group_version :value: None .. py:attribute:: prediction_feature_group_version :value: None .. py:attribute:: error :value: None .. py:attribute:: pending_deployment_ids :value: None .. py:attribute:: failed_deployment_ids :value: None .. py:attribute:: metric_configs :value: None .. py:attribute:: feature_group_monitor_configs :value: None .. py:attribute:: metric_types :value: None .. py:attribute:: model_version :value: None .. py:attribute:: batch_prediction_version :value: None .. py:attribute:: eda_configs :value: None .. py:attribute:: training_forecast_config :value: None .. py:attribute:: prediction_forecast_config :value: None .. py:attribute:: forecast_frequency :value: None .. py:attribute:: monitor_drift_config :value: None .. py:attribute:: prediction_data_use_mappings :value: None .. py:attribute:: training_data_use_mappings :value: None .. py:attribute:: deprecated_keys .. py:method:: __repr__() .. py:method:: to_dict() Get a dict representation of the parameters in this class :returns: The dict value representation of the class parameters :rtype: dict .. py:method:: get_prediction_drift() Gets the label and prediction drifts for a model monitor. :param model_monitor_version: Unique string identifier for a model monitor version created under the project. :type model_monitor_version: str :returns: Object describing training and prediction output label and prediction distributions. :rtype: DriftDistributions .. py:method:: refresh() Calls describe and refreshes the current object's fields :returns: The current object :rtype: ModelMonitorVersion .. py:method:: describe() Retrieves a full description of the specified model monitor version. :param model_monitor_version: The unique version ID of the model monitor version. :type model_monitor_version: str :returns: A model monitor version. :rtype: ModelMonitorVersion .. py:method:: delete() Deletes the specified model monitor version. :param model_monitor_version: Unique identifier of the model monitor version to delete. :type model_monitor_version: str .. py:method:: metric_data(metric_type, actual_values_to_detail = None) Provides the data needed for decile metrics associated with the model monitor. :param metric_type: The type of metric to get data for. :type metric_type: str :param actual_values_to_detail: The actual values to detail. :type actual_values_to_detail: list :returns: Data associated with the metric. :rtype: ModelMonitorVersionMetricData .. py:method:: list_monitor_alert_versions_for_monitor_version() Retrieves the list of monitor alert versions for a specified monitor instance. :param model_monitor_version: The unique ID associated with the model monitor. :type model_monitor_version: str :returns: A list of monitor alert versions. :rtype: list[MonitorAlertVersion] .. py:method:: get_drift_for_feature(feature_name, nested_feature_name = None) Gets the feature drift associated with a single feature in an output feature group from a prediction. :param feature_name: Name of the feature to view the distribution of. :type feature_name: str :param nested_feature_name: Optionally, the name of the nested feature that the feature is in. :type nested_feature_name: str :returns: An object describing the training and prediction output feature distributions. :rtype: FeatureDistribution .. py:method:: get_outliers_for_feature(feature_name = None, nested_feature_name = None) Gets a list of outliers measured by a single feature (or overall) in an output feature group from a prediction. :param feature_name: Name of the feature to view the distribution of. :type feature_name: str :param nested_feature_name: Optionally, the name of the nested feature that the feature is in. :type nested_feature_name: str .. py:method:: wait_for_monitor(timeout=1200) A waiting call until model monitor version is ready. :param timeout: The waiting time given to the call to finish, if it doesn't finish by the allocated time, the call is said to be timed out. :type timeout: int .. py:method:: get_status() Gets the status of the model monitor version. :returns: A string describing the status of the model monitor version, for e.g., pending, complete, etc. :rtype: str