abacusai.feature_drift_summary ============================== .. py:module:: abacusai.feature_drift_summary Classes ------- .. autoapisummary:: abacusai.feature_drift_summary.FeatureDriftSummary Module Contents --------------- .. py:class:: FeatureDriftSummary(client, featureIndex=None, name=None, distance=None, jsDistance=None, wsDistance=None, ksStatistic=None, predictionDrift=None, targetColumn=None, dataIntegrityTimeseries=None, nestedSummary=None, psi=None, csi=None, chiSquare=None, nullViolations={}, rangeViolations={}, catViolations={}) Bases: :py:obj:`abacusai.return_class.AbstractApiClass` Summary of important model monitoring statistics for features available in a model monitoring instance :param client: An authenticated API Client instance :type client: ApiClient :param featureIndex: A list of dicts of eligible feature names and corresponding overall feature drift measures. :type featureIndex: list[dict] :param name: Name of feature. :type name: str :param distance: Symmetric sum of KL divergences between the training distribution and the range of values in the specified window. :type distance: float :param jsDistance: JS divergence between the training distribution and the range of values in the specified window. :type jsDistance: float :param wsDistance: Wasserstein distance between the training distribution and the range of values in the specified window. :type wsDistance: float :param ksStatistic: Kolmogorov-Smirnov statistic computed between the training distribution and the range of values in the specified window. :type ksStatistic: float :param predictionDrift: Drift for the target column. :type predictionDrift: float :param targetColumn: Target column name. :type targetColumn: str :param dataIntegrityTimeseries: Frequency vs Data Integrity Violation Charts. :type dataIntegrityTimeseries: dict :param nestedSummary: Summary of model monitoring statistics for nested features. :type nestedSummary: list[dict] :param psi: Population stability index computed between the training distribution and the range of values in the specified window. :type psi: float :param csi: Characteristic Stability Index computed between the training distribution and the range of values in the specified window. :type csi: float :param chiSquare: Chi-square statistic computed between the training distribution and the range of values in the specified window. :type chiSquare: float :param nullViolations: A list of dicts of feature names and a description of corresponding null violations. :type nullViolations: NullViolation :param rangeViolations: A list of dicts of numerical feature names and corresponding prediction range discrepancies. :type rangeViolations: RangeViolation :param catViolations: A list of dicts of categorical feature names and corresponding prediction range discrepancies. :type catViolations: CategoricalRangeViolation .. py:attribute:: feature_index :value: None .. py:attribute:: name :value: None .. py:attribute:: distance :value: None .. py:attribute:: js_distance :value: None .. py:attribute:: ws_distance :value: None .. py:attribute:: ks_statistic :value: None .. py:attribute:: prediction_drift :value: None .. py:attribute:: target_column :value: None .. py:attribute:: data_integrity_timeseries :value: None .. py:attribute:: nested_summary :value: None .. py:attribute:: psi :value: None .. py:attribute:: csi :value: None .. py:attribute:: chi_square :value: None .. py:attribute:: null_violations .. py:attribute:: range_violations .. py:attribute:: cat_violations .. py:attribute:: deprecated_keys .. py:method:: __repr__() .. py:method:: to_dict() Get a dict representation of the parameters in this class :returns: The dict value representation of the class parameters :rtype: dict